• 제목/요약/키워드: Hot deformation behavior

검색결과 148건 처리시간 0.033초

예비소결된 철계분말 preform의 고온변형거동 (Hot Deformation Behavior of Presintered Steel Powder Preforms)

  • 이강률;서상기
    • 한국기계연구소 소보
    • /
    • 통권19호
    • /
    • pp.53-60
    • /
    • 1989
  • Hot upsetting experiments were carried out on presintered steel powder preforms in the temperature range 700- $950^{\circ}C$ to examine the hot deformation behavior. Following conclusions were drawn on the basis of the present study. -The flow stress during hot deformation is directly related to $\alpha$- $\gamma$ phase trasformation - The flow stress of ferrite is lower than that of austenite in the moderate temperature range 800- $900^{\circ}C$ for most alloys used in the present study - Major restoration behavior during hot deformation in the ferrite range is dynamic recovery.

  • PDF

분무주조 고속도공구강의 고온변형 거동에 관한 연구 (A Study on High Temperature Deformation Behavior of Spray-Formed High Speed Steels)

  • 하태권;정재영
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.123-129
    • /
    • 2018
  • In the present study, the mechanical behavior of the spray-formed high speed steel was investigated employing the internal variable theory of inelastic deformation. Special attention was focused on the effect of the microstructure evolution during the hot working process, such as the distribution of carbides to provide a basic database for the production condition of high speed steels with excellent properties. The billets of high speed steel ASP30TM were fabricated by a spray forming, and the subsequently hot-rolled and heat-treated process to obtain uniformly distributed carbide structure. As noted the spray-formed high speed steel showed relatively coarser carbides than hot-rolled and heat-treated one with fine and uniformly distributed carbide structure. The step strain rate tests and high temperature tensile tests were carried out on both the spray-formed and the hot-rolled specimens, to elucidate their high temperature deformation behavior. The spray-formed high speed steel showed much higher flow stress and lower elongation than the hot-rolled and heat-treated steel. During the tensile test at $900^{\circ}C$, the interruption of the deformation for 100 seconds was conducted to reveal that the recovery was a main dynamic deformation mechanism of spray formed high speed steel. The internal variable theory of the inelastic deformation was used to analyze data from the step strain rate tests, revealing that the activation energies for hot deformation of as-spray-formed and hot-worked steels, which were 157.1 and 278.9 kJ/mol, and which were corresponding to the dislocation core and lattice diffusions of ${\gamma}-Fe$, respectively.

Hot Deformation Behavior of P/M Al6061-20% SiC Composite

  • Asgharzadeh, Hamed;Simchi, Abdolreza
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.855-856
    • /
    • 2006
  • In the present work, hot workability of particulate-reinforced Al6061-20%SiC composite produced by direct hot extrusion technique was studied. Uniaxial hot compression test at various temperatures and strain rates was used and the workability behavior was evaluated from the flow curves and the attendant microstructures. It was shown that the presence of SiC particles in the soft Al6061 matrix deteriorates the hot workability. Bulging of the specimens and flow lines were observed, which indicate the plastic instability during hot working. Microstructure of the composites after hot deformation was found to be heterogeneous, i.e. the reinforcement clusters were observed at the flow lines. The mechanism of deformation was found to be controlled primarily by dynamic recrystallization.

  • PDF

공구강의 고온 변형 거동 예측을 위한 모델 비교 연구 (Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel)

  • 김근학;박동성;전중환;이민하;이석재
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

구성 모델과 공정 지도를 이용한 AISI 4340강의 고온 변형 거동 (Hot Deformation Behavior of AISI 4340 using Constitutive Model and Processing Map)

  • 김근학;정민수;이석재
    • 열처리공학회지
    • /
    • 제30권5호
    • /
    • pp.187-196
    • /
    • 2017
  • High temperature flow behaviors of AISI 4340 steel were investigated using isothermal compression tests under the temperature range from 850 to $1100^{\circ}C$ and a strain rate from 0.01 to $10s^{-1}$. The flow stress decreased with increasing compression temperature and decreasing strain rate. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrheniustyped equation with the Zener-Hollomon parameter was used to simulate the hot deformation behavior of AISI 4340 steel. The modification of the Zener-Hollomon parameter and lnA parameter resulted in the improvement of the calculation accuracy of the proposed constitutive model compared with the experimental flow curves. In addition, the process map of AISI 4340 steel was proposed. The instable process condition for hot deformation was predicted and its reliability was verified with the experimental observation.

변형가공도를 이용한 AI 5083 합금의 고온변형거동 (High Temperature Deformation Behavior of Al 5083 Alloy Using Deformation Processing Maps)

  • 고병철;김종현;유연철
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.450-458
    • /
    • 1998
  • The high temperature deformation behavior of Al 5083 alloy has been studied in the temperature range of 350 to 520 ${\circ}C$ and strain rate range of 0.2 to 3.0/sec by torsion test. The strain rate sensitivity(m) of the material was evaluated and used for estabilishing power dissipation maps following the dynamic material model. These maps show the variation of efficiency of power dissipation(${\eta}$=2m/(2m+1)) with temperature and strain rate. Hot restoration of dynamic recrystallization (DRX) was analyzed from the flow curve, deformed microstructure, and processing maps during hot deformation. Also, the effect of deformation strain on the efficiency of power dissipation of the alloy was analysed using the processing maps. Moreover relationship between the hot-ductility and efficiency of power dissipation of the alloy depending on thmperature and strain rate was studied using the Zener-Hollomon parameter(Z=${\varepsilon}$exp(Q/RT) It is found that the maximum efficiency of power dissipation for DRX in Al 5083 alloy is about 74.6 pct at the strain of 0.2. The strain rate and temperature at which the efficiency peak occurred in the DRX domain is found to be ∼0.1/sec and ∼450${\circ}C$ respectively.

  • PDF

Al-Mg-Si합금의 고온 소성 변형 거동 (Plastic Deformation Behavior Of Al-Mg-Si Alloy At The Elevated Temperature)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.172-175
    • /
    • 2003
  • Thermomechanical behavior of Al-Mg-Si alloys have been studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests have been carried out to get the basic information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys has been carried out and analyzed by the comparison with the compression tests. Microstructural features after forging have been discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we have found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains have been found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

  • PDF

Al-Mg-Si 합금의 고온 소성 변형 거동 (Plastic Deformation Behavior of Al-Mg-Si Alloys at the Elevated Temperatures)

  • 권용남;이영선;이정환
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.27-32
    • /
    • 2004
  • Thermomechanical behavior of Al-Mg-Si alloys was studied to investigate the effect of microstructural features such as pre-existing substructure and distribution of particles on the deformation characteristics. The controlled compression tests were carried out to get the information on how the alloy responds to temperature, strain amount and strain rate. Then hot forging of Al-Mg-Si alloys carried out and analyzed by the comparison with the compression tests. Microstructural features after forging were discussed in terms of the thermomechanical response of Al-Mg-Si alloys. As already well mentioned, we found that the deformation of Al-Mg-Si at the elevated temperature brought the recovered structure on most conditions. In a certain time, however, abnormally large grains were found as a result of deformation assisted grain growth, which means that hot forging of Al-Mg-Si alloys could lead to a undesirable microstructural variation and the consequent mechanical properties such as fatigue strength.

고온변형에 의한 냉간압조용강의 시멘타이트 구상화 연구 (The Spheroidization of Cementite for Cold Heading Quality Steel by Hot Deformation)

  • 이웅렬;강구현;방명성;남승의
    • 열처리공학회지
    • /
    • 제17권4호
    • /
    • pp.211-215
    • /
    • 2004
  • Conventional spheroidization process of cold heading quality steels requires long heat treatment time, and reduction of the heat treatment time is important for improving productivity in the industry. Recently, hot deformation method has been proposed as a means of increasing spherodization kinetics. In this study, the influences of hot deformation on the spherodization behavior of cold heading quality steels were investigated. Hot deformation at the temperature range of $700^{\circ}C$ significantly enhances the spheroidization kinetics. Hot deformation can lead to a substantial reduction of spherodization process time as low as 1~5 hrs.

고온 금형압축시 티타늄 합금 분말의 치밀화 거동 (Densification Behavior of Titanium Alloy Powder Under Hot Pressing)

  • 양훈철;김기태
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3061-3071
    • /
    • 2000
  • Densification behavior of titanium alloy powder was investigated under hot pressing at various pressures and temperatures. Experimental date were obtained for densification of titanium alloy powder under an instantaneous loading and subsequent creep deformation during hot pressing. The constitutive models of Fleck et al. and the modified Gurson were employed for thermo-phastic deformation under the instantaneous loading and that f Abouaf and co-workers for creep deformation of titanium alloy powder during hot pressing. By implementing these constitutive equations into a finite element program(ABAQUS), finite element results were compared with experimental data during hot pressing. To investigate the effect of friction between the power and die wall, density distributions of power compacts were measured and compared with finite element calculations. Finite element results from the models of Fleck et al. and the modified Gurson agreed reasonably good with experimental data for densification and density distribution of titanium alloy powder under the instantaneous loading during hot pressing. Finite element results from the model of Abouaf and co-workers, however, somewhat overestimate experimental data for creep deformation of power compacts during hot pressing.