DOI QR코드

DOI QR Code

Coupled data classification method using unsupervised learning and fuzzy logic in Cloud computing environment

클라우드 컴퓨팅 환경에서 무감독학습 방법과 퍼지이론을 이용한 결합형 데이터 분류기법

  • Cho, Kyu-Cheol (Electronics and Telecommunications Research Institute) ;
  • Kim, Jae-Kwon (School of Computer Science and Engineering, Inha University)
  • 조규철 (한국전자통신연구원) ;
  • 김재권 (인하대학교 컴퓨터정보공학과)
  • Received : 2014.07.25
  • Accepted : 2014.08.19
  • Published : 2014.08.30

Abstract

In This paper, we propose the unsupervised learning and fuzzy logic-based coupled data classification method base on ART. The unsupervised learning-based data classification helps improve the grouping technique, but decreases the processing efficiency. However, the data classification requires the decision technique to induce high success rate of data classification with optimal threshold. Therefore it is also necessary to solve the uncertainty of the threshold decision. The proposed method deduces the optimal threshold with the designing of fuzzy parameter and rules. In order to evaluate the proposed method, we design the simulation model with the GPCR(G protein coupled receptor) data in cloud computing environment. Simulation results verify the efficiency of our method with the high recognition rate and low processing time.

본 논문은 무감독학습을 통한 데이터 분류기법인 ART에서 퍼지이론을 이용한 결합형 데이터 분류 방법을 제안한다. 무감독학습기법 기반의 데이터 분류 기술은 분류기술의 향상의 장점이 있지만, 처리성능이 저하된다는 단점이 있다. 민첩성 있는 대용량데이터 처리와 분류인식률을 만족하는 최적의 임계값 결정기법이 필요하지만, 이는 불확실성이 많이 따르기 때문에 두 가지를 고려하여 상호보완 할 수 있는 처리기법이 필요하다. 제안하는 기법은 무감독학습을 하기 위해 퍼지매개변수와 퍼지 규칙을 설계하여 최적의 임계값을 도출한다. 제안하는 기법의 성능평가를 위해 클라우드 컴퓨팅환경에서 G 단백질 연결 수용체(G protein coupled receptor, GPCR)데이터를 이용하여 실험하였으며, 실험결과는 높은 인식률과 낮은 처리시간을 통해 결합형 데이터 분류에 효과적임을 입증하였다.

Keywords

References

  1. Y. Zhang, D. Sow, D. Turaga and M. Schaar, "A Fast Online Learning Algorithm for Distributed Mining of BigData," ACM SIGMETRICS performance Evaluation Review, Vol. 41, Issue 4, pp. 90-93, March 2014. https://doi.org/10.1145/2627534.2627562
  2. Xue, Liangfei, Dongfeng Yuan, and Mingyan Jiang, "Web Data Mining Based on Cloud Computing," Proceedings of the 2012 International Conference on Cybernetics and Informatics. Springer New York, 2014.
  3. Cho D.K. and Park S.C., "Development and Implementation of Monitoring System for Management of Virtual Resource Based on Cloud Computing," Journal of The Korea Society of Computer and Information, Vol. 18, No. 2, pp. 41-47, 2013 https://doi.org/10.9708/jksci.2013.18.2.041
  4. Kang I.S., Kim T.H. and Lee H.C., "Data processing techniques applying data mining based on enterprise cloud computing," Journal of the Korea society of computer and information, Vol. 16, No. 8, pp. 1-10, 2011. https://doi.org/10.9708/jksci.2011.16.8.001
  5. Kim J.K., Lee J.S., Park D.K., Lim Y.S., Lee Y.H. and Jung E.Y., "Adaptive mining prediction model for content recommendation to coronary heart disease patients", Cluster Computing, 2013. DOI: 10.1007/s10586-013-0308-1
  6. Stephen Grossberg, "Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world," Neural Networks, Vol. 37, pp. 1-47, 2013. https://doi.org/10.1016/j.neunet.2012.09.017
  7. F. Horn, J. Weare, M. W. Beukers, S. Horsch, A. Bairoch, W. Chen, O. Edvardsen, F. Campagne and G. Vriend, "GPCRDB: An Information System for G Protein-Coupled Receptors," Nucleic Acids Res, Vol. 26, Issue 1, pp. 275-279, 1998. https://doi.org/10.1093/nar/26.1.275
  8. D. T. Chalmers and D. P. Behan, "The use of Constitutively Active GPCRs in Drug Discovery and Functional Genomics," Nature Reviews, Drug Discovery, Vol 1, No. 8, pp. 599-608, 2002. https://doi.org/10.1038/nrd872
  9. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M. Mitchell, "Toward an Architecture for Never-Ending Language Learning," Proceeding of the Conference on Artificial Intelligence AAAI Press, Vol. 5, pp. 1306-1313, 2010.
  10. Z. Qi, Y. Tian and Y. Shi, "Robust twin support vector machine for pattern classification," Pattern Recognition, Vol. 46, Issue 1, pp. 305-316, 2013. https://doi.org/10.1016/j.patcog.2012.06.019
  11. P. Cheng, Z. Ma, D. Cui, R. Geng and C. Chen, "Intelligent Sequence Adjusting Algorithm Based on General Satisfaction Function for Air Traffic Arrival Flow Management," Proceeding of the Computational Intelligence in Robotics and Automation, pp. 533-537, 2003.
  12. S. Gorinsky and H. Vin, "Extended Analysis of Binary Adjustment Algorithms," Technical Report TR2002-39, Department of Computer Sciences, The University of Texas at Austin, 2002.
  13. B. P. Zeigler, H. S. Song, T. G. Kim and H. Praehofer, "DEVS Framework for Modeling, Simulation, Analysis, and Design of Hybrid Systems in Hybrid," Lecture Notes in Computer Science, Vol. 999, pp.529-551, 1995.