DOI QR코드

DOI QR Code

An Implementation of a Video-Equipped Real-Time Fire Detection Algorithm Using GPGPU

GPGPU를 이용한 비디오 기반 실시간 화재감지 알고리즘 구현

  • Shon, Dong-Koo (School of Electrical, Electronics, and Computer Engineering, University of Ulsan) ;
  • Kim, Cheol-Hong (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Kim, Jong-Myon (School of Electrical, Electronics, and Computer Engineering, University of Ulsan)
  • 손동구 (울산대학교 전기전자컴퓨터공학과) ;
  • 김철홍 (전남대학교 전자컴퓨터공학부) ;
  • 김종면 (울산대학교 전기전자컴퓨터공학과)
  • Received : 2014.07.01
  • Accepted : 2014.08.19
  • Published : 2014.08.30

Abstract

This paper proposes a parallel implementation of the video based 4-stage fire detection algorithm using a general-purpose graphics processing unit (GPGPU) to support real-time processing of the high computational algorithm. In addition, this paper compares the performance of the GPGPU based fire detection implementation with that of the CPU implementation to show the effectiveness of the proposed method. Experimental results using five fire included videos with an SXGA ($1400{\times}1050$) resolution, the proposed GPGPU implementation achieves 6.6x better performance that the CPU implementation, showing 30.53ms per frame which satisfies real-time processing (30 frames per second, 30fps) of the fire detection algorithm.

본 논문에서는 많은 양의 연산량을 요구하는 비디오 기반 4단계 화재감지 알고리즘의 실시간 처리를 위해 범용 그래픽 처리 장치 (general-purpose graphics processing unit, GPGPU)를 이용한 병렬 구현 방법을 제안한다. 또한 GPGPU 기반 화재감지 알고리즘의 효용성을 확인하기 위해 범용 고성능 CPU와의 성능을 비교하였다. SXGA($1400{\times}1050$) 해상도의 화재 비디오 5개를 이용해 모의실험 결과, GPGPU기반 화재감지 알고리즘은 CPU 구현보다 약 6.6배 더 높은 성능을 보였으며, 평균 프레임 당 30.53ms의 실행시간이 소요되어 실시간 처리(초당 30프레임)가 가능함을 보였다.

Keywords

References

  1. S. M. Kang, J. M. Kim, "Survey for Early Detection Techniques of Smoke and Flame using Camera Images," Journal of the Korea Society of Computer and Information, vol.16, no.4, pp.43-52, 2011. https://doi.org/10.9708/jksci.2011.16.4.043
  2. Z, Zhang, T. Shen, J. Zou, "An Improved Probabilistic Approach for Fire Detection in Videos," Fire Technology, vol. 50, no. 3, pp.745-752, 2014. https://doi.org/10.1007/s10694-012-0253-1
  3. B. C. Ko, K. H. Cheong, and J. Y. Nam, "Early Fire Detection Algorithm Based on Irregular Patterns of Flames and Hierarchical Bayesian Networks," Fire Safety J, vol. 45, no. 4, pp. 262-270, 2010. https://doi.org/10.1016/j.firesaf.2010.04.001
  4. D. C. Wang, X. Cui, E. Park, C. Jin, H. Kim, "Adaptive flame detection using randomness testing and robust features," Fire Safety Journal, vol. 55, pp. 116-125, 2013. https://doi.org/10.1016/j.firesaf.2012.10.011
  5. D, H, Lee, J, W, Yoo, K. H. Lee, Y. Kim, "Real Time Flame and Smoke Detection Algorithm Based on Conditional Test in YCbCr Color Model and Adaptive Differential Image," Journal of the Korea Society of Computer and Information, vol. 15, no. 5, pp. 57-65, 2010. https://doi.org/10.9708/jksci.2010.15.5.057
  6. I. kolesov, P. Karasev, A. Tannenbaum, and E. Haber, "Fire and Smoke Detection in Video with Optimal Mass Transport Based Optical Flow and Neural Networks," in Proc. 2010 IEEE International Conference Image Processing, Hong Kong, pp. 761-764, 2010.
  7. B. Lee and D. Han, "Real-Time Fire Detection Using Camera Sequence Image in Tunnel Environment," Lect. Notes Comput. Sci., vol. 4681, pp. 1209-1220, 2007.
  8. X. Qi and J. Ebert, "A Computer Vision Based Method for Fire Detection in Color Videos," Int. Journal of imaging and Robotics, vol. 2, no. 9, pp. 22-34, 2009.
  9. T. Celik, H. Demirel, H. Ozkaramanli, and M. Uyguroglu, "Fire Detection Using Statistical Color Model in Video Sequences," Journal of Visual Communication Image Rep, vol. 18, no. 2, pp. 176-185, 2007. https://doi.org/10.1016/j.jvcir.2006.12.003
  10. T. Qiu, Y. Yan, and G. Lu, "An Autoadaptive Edge-Detection Algorithm for Flame and Fire Image Processing," IEEE Trans. Instrum. Meas., vol. 61, no. 5, pp. 1486-1493, 2012. https://doi.org/10.1109/TIM.2011.2175833
  11. B. C. Ko, K. H. Cheong, and J. Y. Nam, "Fire Detection Based on Vision Sensor and Support Vector Machines," Fire Safety Journal, Vol. 41, no. 3, pp. 322-329, 2009.
  12. G. Marbach, M. Loepfe, and T. Brupbacher, "An image processing technique for fire detection in video Images," Fire Safety Journal, vol. 41, no. 4, pp. 285-289, 2006. https://doi.org/10.1016/j.firesaf.2006.02.001
  13. O. Gunay, K. Tasdemir, B. U. Toreyin, and A. Enis, "Fire Detection in Video Using LMS Based Active Learning," Fire Technol, vol. 46, no. 3, pp. 551-577, 2010. https://doi.org/10.1007/s10694-009-0106-8
  14. S. M. Kang, J. M. Kim, "Multimedia Extension Instructions and Optimal Many-core Processor Architecture Exploration for Portable Ultrasonic Image Processing," Journal of the Korea Society of Computer and Information, vol.17, no.8, pp.1-10, 2012. https://doi.org/10.9708/jksci.2012.17.8.001
  15. I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. W. Kim, "Design and Performance Evaluation of Image Processing Algorithm on GPUs," IEEE Trans. Parallel Distrib. Syst., vol.22, no.1, pp.91-104, 2011. https://doi.org/10.1109/TPDS.2010.115
  16. I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. W. Kim, "Design and Performance Evaluation of Image Processing Algorithms on GPUs," IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 91-104, 2011. https://doi.org/10.1109/TPDS.2010.115
  17. P. N. Glaskowsky, "NVIDIA's Fermi: the first complete GPU computing architecture." White paper, 2009.

Cited by

  1. Implementation of High Speed Image Data Transfer using XDMA vol.25, pp.7, 2014, https://doi.org/10.9708/jksci.2020.25.07.001