DOI QR코드

DOI QR Code

Performance and Variation-Immunity Benefits of Segmented-Channel MOSFETs (SegFETs) Using HfO2 or SiO2 Trench Isolation

  • Nam, Hyohyun (Shin are with the School of Electrical and Computer Engineering, University of Seoul) ;
  • Park, Seulki (Shin are with the School of Electrical and Computer Engineering, University of Seoul) ;
  • Shin, Changhwan (Shin are with the School of Electrical and Computer Engineering, University of Seoul)
  • 투고 : 2014.01.24
  • 심사 : 2014.06.28
  • 발행 : 2014.08.30

초록

Segmented-channel MOSFETs (SegFETs) can achieve both good performance and variation robustness through the use of $HfO_2$ (a high-k material) to create the shallow trench isolation (STI) region and the very shallow trench isolation (VSTI) region in them. SegFETs with both an HTI region and a VSTI region (i.e., the STI region is filled with $HfO_2$, and the VSTI region is filled with $SiO_2$) can meet the device specifications for high-performance (HP) applications, whereas SegFETs with both an STI region and a VHTI region (i.e., the VSTI region is filled with $HfO_2$, and the STI region is filled with $SiO_2$) are best suited to low-standby power applications. AC analysis shows that the total capacitance of the gate ($C_{gg}$) is strongly affected by the materials in the STI and VSTI regions because of the fringing electric-field effect. This implies that the highest $C_{gg}$ value can be obtained in an HTI/VHTI SegFET. Lastly, the three-dimensional TCAD simulation results with three different random variation sources [e.g., line-edge roughness (LER), random dopant fluctuation (RDF), and work-function variation (WFV)] show that there is no significant dependence on the materials used in the STI or VSTI regions, because of the predominance of the WFV.

키워드

참고문헌

  1. C. Fenouillet-Beranger, P. Perreau, O. Weber, I. Ben-Akkez, A. Cros, A. Bajolet, S. Haendler, P. Fonteneau, P. Gouraud, E. Richard, F. Abbate, D. Barge, D. Pellissier-Tanon, B. Dumont, F. Andrieu, J. Passieux, R. Bon, V. Barral, D. Golanski, D. Petit, N. Planes, O. Bonin, W. Schwarzenbach, T. Poiroux, O. Faynot, M. Haond, F. Boeuf, "Enhancement of devices performance of hybrid FDSOI/Bulk technology by using UTBOX sSOI substrates," in Proc. Symp. VLSI Techology., Jun. 2012, pp. 115-116.
  2. C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Weber, P. Yashar, K. Zawadzki, and K. Mistry, "A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors," in Proc. Symp. VLSI Techology., Jun. 2012, pp. 131-132.
  3. C. Shin, N. Damrongplasit, X. Sun, Y. Tsukamoto, B. Nikolic, and T.-J. K. Liu, "Performance and Yield Benefits of Quasi-Planar Bulk CMOS Technology for 6-T SRAM at the 22-nm Node," IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1846-1854, Jul. 2011. https://doi.org/10.1109/TED.2011.2139213
  4. B. Ho, N. Xu, B. Wood, V. Tran, S. Chopra, Y. Kim, B-Y Nguyen, O. Bonnin, C. Mazure, S. Kuppurao, C.-P. Chang, and T.-J. K. Liu, "Segmented-channel Si1−xGex/Si pMOSFET for improved ION and reduced variability," in Proc. Symp. VLSI Techology., Jun. 2012, pp. 167-168.
  5. B. Ho, N. Xu, B. Wood, V. Tran, S. Chopra, K. Yihwan, B-Y Nguyen, O. Bonnin, C. Mazure, S. Kuppurao, C. Chorng-Ping, and T.-J. K. Liu, "Fabrication of Si1−xGex/Si pMOSFETs using corrugated substrates for improved ION and reduced layout-width dependence," IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 153-158, Jan. 2013. https://doi.org/10.1109/TED.2012.2230175
  6. International Technology Roadmap for Semiconductors (ITRS), 2012, (http://public.itrs.net/).
  7. H. Nam and C. Shin, "The Design optimization and variation study of segmented-channel MOSFET using $HfO_2$or $SiO_2$ trench isolation," in Proc. VLSI-TSA, Apr. 2013, pp. 22-24.
  8. N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, "Role of long-range and short-range coulomb potentials in threshold characteristics under discrete dopants in sub-0.1${\mu}m$ Si- MOSFETs," in Proc. IEEE IEDM, Dec. 2000, pp. 275-278.
  9. X. Sun, Q. Lu, V. Moroz, H. Takeuchi, G. Gebara, J. Wetzel, S. Ikeda, C. Shin, and T.-J. K. Liu, "Trigate bulk MOSFET design for CMOS scaling to the end of the roadmap," IEEE Electron Device Lett., vol. 29, no. 5, pp. 491-493, May 2008. https://doi.org/10.1109/LED.2008.919795
  10. Sentaurus Device User Guide Version: H-2013.03, Synopsys, Mountain View, CA, USA, Mar. 2013.
  11. H. Nam and C. Shin, "Study of high-k/metal-gate work-function variation using Rayleigh distribution," IEEE Electron Device Lett., vol. 34, no. 4, pp. 532-534, Apr. 2013. https://doi.org/10.1109/LED.2013.2247376
  12. H. Nam and C. Shin, "Study of high-k/metal-gate work-function variation in FinFET: the modified RGG concept," IEEE Electron Devices Lett., vol. 34, no. 12, pp. 1560-1562, Dec. 2013. https://doi.org/10.1109/LED.2013.2287283
  13. C. Shin, X. Sun, and T.-J. K. Liu, "Study of random-dopant-fluctuation (RDF) effects for the trigate bulk MOSFET," IEEE Trans. Electron Devices, vol. 56, no. 7, pp. 1538-1542, Jul. 2009. https://doi.org/10.1109/TED.2009.2020321
  14. A. Asenov, "Random dopant induced threshold voltage lowering and fluctuations in sub-0.1${\mu}m$ MOSFETs: A 3-D "atomistic" simulation study," IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 2505-2513, Dec. 1998. https://doi.org/10.1109/16.735728
  15. C. Shin and I. J. Park, "Impact of using doublepattering versus single patterning on threshold voltage (VTH) variation in quasi-planar tri-gate bulk MOSFETs," IEEE Electron Devices Lett., vol. 34, no. 5, pp. 578-580, May 2013. https://doi.org/10.1109/LED.2013.2249653