DOI QR코드

DOI QR Code

A Study on the Biogasification of Municipal and Industrial Wastewater Sludge

도시 하수 및 공장 폐수 슬러지의 바이오가스화에 관한 연구

  • Kim, Jahyun (Department of Environmental Engineering, Pukyong National University) ;
  • Kim, Seogku (Construction Environment Research Team, Korea Institute of Construction Technology) ;
  • Hwang, Injoo (Construction Environment Research Team, Korea Institute of Construction Technology) ;
  • Ahn, Jaehwan (Construction Environment Research Team, Korea Institute of Construction Technology) ;
  • Kang, Sungwon (Construction Environment Research Team, Korea Institute of Construction Technology) ;
  • Lee, Wontae (Civil and Environmental Engineering, Kumoh National Institute of Technology School) ;
  • Lim, Junhyuk (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Jeakun (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Taeyoon (Department of Environmental Engineering, Pukyong National University)
  • Received : 2014.03.04
  • Accepted : 2014.07.18
  • Published : 2014.09.01

Abstract

Anaerobic digestion was investigated for the stabilization of sludge, decrease of volatile solids, production of biogas for wastewater sludge. In this study, total solids and volatile solids, elemental analysis were conducted to determine characteristics of various types of sludges and investigate the feasibility of biogas production of Municipal Wastewater Sludge (MWS), Industrial Wastewater Sludge (IWS), mixed sludge (Mix), and Municipal Wastewater Sludg Cake (MWSC). Total solids, volatile solids, and C/N ratio were determined in the range of 11.2~20.6 %, 62.1~83.1 % of TS and 4.96~8.33 %. Using the biochemical methane potential (BMP test), mixed sludge and wastewater sludge finished the methane production within approximately 20 day and 16~17 day. Sludge cake finished within 10 day. Mixed sludge produced 395.5 mL $CH_4$ per g of Volatile Solid (VS) and resulted in the highest methane production. For carbon dioxide production, five sludges had similar value of accumulated carbon dioxide production except for sludge cake.

슬러지의 안정화, 휘발성 고형물 감소, 바이오가스 생산을 위해 혐기성 소화공정이 슬러지의 처리 방안으로 연구됐다. 본 연구에서는 하 폐수 슬러지(MWS, IWS), 혼합슬러지(Mix), 탈수슬러지(MWSC)를 대상으로 바이오가스 생산 가능성을 살펴보기 위해 Total solids, Volatile solids, 원소분석, BMP 실험을 하였다. Total solids 함량은 11.2~20.6 %의 값을 가지며 Volatile solids의 함량은 TS의 62.1~83.1 %의 값을 가지고 있다. C/N비는 4.96~8.33의 값을 나타났다. BMP test를 한 결과 혼합슬러지의 경우 약 20일, 하 폐수 슬러지의 경우 약 16~17일에 메탄발생이 종료되었다. 탈수케이크는 약 10일까지 메탄이 발생하였으며 가장 빨리 메탄발생이 종료되었다. 누적 메탄발생량의 경우 혼합슬러지가 395.50 mL $CH_4/g$ VS으로 가장 높은 누적 메탄 발생량을 가진다. 누적 이산화탄소 발생량은 탈수케이크를 제외하고 비슷한 값을 보이고 있다.

Keywords

References

  1. Astals, S., Esteban-Gutierrez, M., Fernandez-Arevalo, T., Aymerich, E., Garcia-Heras, J. L. and Mata-Alvarez, J. L. (2013), Anaerobic digestion of seven different sewage sludges: A biodegradability and modelling study, Water Research, Vol. 47, No. 16, pp. 6033-6043. https://doi.org/10.1016/j.watres.2013.07.019
  2. Chio, H. B., Hwang, K. Y. and Kim, Y. S. (1997), A study on factors affection anaerobic digestion of waste activated sludge, Kor. J. Env. Hlth. Soc., Vol. 23, No. 1, pp. 28-33 (in Korean).
  3. Donoso-Bravo, A. and Fdz-Polanco, M. (2013), Anaerobic co-digestion of sewage sludge and grease trap: Assessment of enzymeaddition, Process Biochemistry, Vol. 48, No. 5-6, pp. 936-940. https://doi.org/10.1016/j.procbio.2013.04.005
  4. Kafle, G. K., Kim, S. H. and Sung, K. I. (2013), Ensiling of fish industry waste for biogas production: A lab scale evaluation of biochemical methane potential (BMP) and kinetics, Bioresource Technology, Vol. 127, pp. 326-336. https://doi.org/10.1016/j.biortech.2012.09.032
  5. Kang, J. G., Lee, D. J., Kim, K. H., Oh, G. J. and Rhee, S. S. (2013), Feasibility study on biogasification of agriculture byproduct silage by biochemical methane potentia test, J. of Korea Society of Waste Management, Vol. 30, No. 7, pp. 678-687l (in Korean). https://doi.org/10.9786/kswm.2013.30.7.678
  6. Karthikeyan, O. P. and Visvanathan, C. (2012), Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester, Bioresource Technology, Vol. 113, pp. 294-302. https://doi.org/10.1016/j.biortech.2012.02.028
  7. Kim, M. J., Liu, C., Noh, J. W., Yang, Y., Oh, S. C., Shimizu, K., Lee, D. Y. and Zhang, Z. (2013), Hydrogen and methane production from untreated rice straw and raw sewage sludge under thermophilic anaerobic conditions, International Journal of Hydrogen Energy, Vol. 38, No. 21, pp. 8648-8656. https://doi.org/10.1016/j.ijhydene.2013.04.079
  8. Kim, S. H., Kim, H. C., Kim, C. H. and Yoon, Y. M. (2010), The measurement of biochemical methane potential in the several organic waste resources, Korean J. Soil Sci. Fert, Vol. 43, No. 3, pp. 356-362 (in Korean).
  9. Kim, S. H., Kim, H. C., Oh, S. Y., Kim, C. H. and Yoon, Y. M. (2012), Effect of substrate to inoculum ratio on biochemical methane potential in the thermal pretreatment of piggery sludge, Korean J. Soil Sci. Fert., Vol. 45, No. 4, pp. 532-539 (in Korean). https://doi.org/10.7745/KJSSF.2012.45.4.532
  10. Lee, C. Y. and Park, S. Y. (2008), Improvement of solubilization and anaerobic biodegradability for sewage sludge using ultrasonic pre-treatment, Korean Journal of Odor Research and Engineering, Vol. 16, No. 3, pp. 83-90 (in Korean).
  11. Lee, S. Y., Ryu, H. W. and Cho, K. S. (2012), Effect of ammonia on the oxidation of methane by methanotrophs, Korean Journal of Odor Research and Engineering, Vol. 11, No. 1, pp. 41-46 (in Korean).
  12. Lee, Y. H., Park, S. H. and Sung, N. C. (2001), Study on production characteristic of methane gas in anaerobic digestion reactor according to input type of food waste, J. of KOWREC, Vol. 9, No. 4, pp. 55-60 (in Korean).
  13. Li, Y., Zhang, Y., Liu, G., Chen, C., He, Y. and Liu, X. (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates, Bioresource Technology, Vol. 169, pp. 565-569.
  14. Liu, C., Shi, W., Li, H., Lei, Z., He, L. and Zhang, Z. (2014), Improvement of methane production from waste activated sludge by on-site photocatalytic pretreatment in a photocatalytic anaerobic fermenter, Bioresource Technology, Vol. 155, pp. 198-203 https://doi.org/10.1016/j.biortech.2013.12.041
  15. Ministry of environment (2012), Statics of sewerage 2012, p. 16 (in Korean).
  16. Namkung, K. C. and Jeon, C. O. (2010), Pretreatment of wasteactivated sludge for enhancement of methane production, Kor. J. Microbiol. Biotechnol., Vol. 38, No. 4, pp. 362-372 (in Korean).
  17. Owen, W. P., Stuckey, D. C., Healy, J. B., Young, L. Y. and McCarty, P. L. (1979), Bioassay for monitoring biochemical methane potential & anaerobic toxity, Water Res., Vol. 13, No. 6, pp. 485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  18. Shelton, D. R. and Tiedje, J. M. (1984), General method for determining anaerobic biodegradation potential, Appl. Environ. Microbid, Vol. 47, No. 4, pp. 850-857.
  19. Shin, K. S., Kim, C. H., Lee, S. E. and Yoon, Y. M. (2011), Biochemical methane potential of agricultural waste biomass, Korean J. Soil Sci. Fret., Vol. 44, No. 5, pp. 903-915 (in Korean). https://doi.org/10.7745/KJSSF.2011.44.5.903
  20. Song, J. H., Kim, S. K., Lee, J. K., Koh, T. H. and Lee, T. Y. (2010), Estimation of ultimate methane yields and biodegradability from urban stream sediments using BMP test, Korean Geoenvironmental Society, Vol. 11, No. 2, pp. 33-42 (in Korean).
  21. Tchobanoglous, G., Theisen, H. and Vigil, S. A. (1993), Integrated solid waste management: Engineering principles and management issues, Mc-Graw Hill, Singapore, pp. 381-417.