DOI QR코드

DOI QR Code

Cone-Beam Computed Tomogram (CBCT)과 Adjusted 2D lateral cephalogram의 계측점 차이에 관한 비교 연구

Comparison of landmark positions between Cone-Beam Computed Tomogram (CBCT) and Adjusted 2D lateral cephalogram

  • 손수정 (이화여자대학교 임상치의학대학원) ;
  • 전윤식 (이화여자대학교 임상치의학대학원) ;
  • 김민지 (이화여자대학교 임상치의학대학원)
  • Son, Soo-Jung (Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Chun, Youn-Sic (Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Kim, Minji (Graduate School of Clinical Dentistry, Ewha Womans University)
  • 투고 : 2014.06.20
  • 심사 : 2014.07.14
  • 발행 : 2014.07.31

초록

목적: 본 연구에서는 CBCT (Cone-Beam Computed Tomogram)와 100%로 확대율을 보정한 조절된 측모 두부 방사선 규격 계측 사진(Adjusted 2D Lateral Cephalogram; 이하 Adj-Ceph)의 좌표값을 비교하여 차이가 있는 계측점들의 항목을 분석하여 기존의 2D 분석법을 CBCT 분석에 적용할 수 있는지 여부를 평가해보고자 하였다. 재료 및 방법: 성인 환자 50명의 CBCT 자료 50개와, 동일 환자의 측모 두부 방사선 규격사진을 100% 확대율로 보정한 자료(Adj-Ceph) 50개를 대상으로 하여, 수평축과 수직축의 좌표를 비교하였다. 계측점들의 위치와 좌우 중첩 여부에 따라 두개골 전방에 위치한 점들(group A), 두개 중후방에 위치한 점들(group B), 좌우 양측성 점들(group C), 치아부위 계측점들(group D) 네 그룹으로 나누어 분석 하였고, 좌표값에 유의한 차이가 있는지 분석하기 위하여 paired t-test를 시행하였다. 결과: 수평축(Y축)에서는 Group B (S, Ar, Ba, PNS), Group C (Po, Or, Hinge axis, Go), Group D (U1RP, U6CP, L6CP) 등 11개의 계측점에서 유의한 차이가 있었다. 수직축(Z축)에서는 전체 계측점에서 유의한 차이가 있었다(P<.01). 좌표값의 차이 분석 결과 수평축에서는 13개의 계측점에서 1 mm 이상의 유의한 차이가 있었다. 수직축에서는 Group B의 Sella를 제외한 전체 계측점에서 1 mm 이상의 유의한 차이가 있었다. 결론: CBCT 분석 시에는 기존의 측모두부방사선 규격사진의 분석법을 그대로 사용하기에는 어려움이 있다. 3D 분석법, 또는 수평축에서 13개의 계측점들이 보정되고, 수칙축 19개가 보정된 수정된 새로운 2D 분석법이 사용되어야 한다.

Purpose: This study aims to investigate if 2D analysis method is applicable to analysis of CBCT by comparing measuring points of CBCT with those of Adjusted 2D Lateral Cephalogram (Adj-Ceph) with magnification adjusted to 100% and finding out at which landmarks the difference in position appear. Materials and methods: CBCT data and Adj-Ceph (100% magnification) data from 50 adult patients have been extracted as research objects, and the horizontal (Y axis) and vertical (Z axis) coordinates of landmarks were compared. Landmarks have been categorized into 4 groups by the position and whether they are bilaterally overlapped. Paired t-test was used to compare differences between Adj-Ceph and CBCT. Results: Significant difference was found at 11 landmarks including Group B (S, Ar, Ba, PNS), Group C (Po, Or, Hinge axis, Go) and Group D (U1RP, U6CP, L6CP) in the horizontal (Y) axis while all the landmarks in vertical (Z) axis showed significant difference (P<.05). As a result of landmark difference analysis, a meaningful difference with more than 1 mm at 13 landmarks were indentifed in the horizontal axis. In the vertical axis, significant difference over 1 mm was detected from every landmark except Sella. Conclusion: Using the conventional lateral cephalometric measurements on CBCT is insufficient. A new 3D analysis or a modified 2D analysis adjusted on 19 landmarks of the vertical axis and 13 of the horizontal axis are needed when implementing CBCT diagnosis.

키워드

참고문헌

  1. Broadbent BH. A new x-ray technique and its application to orthodontia. Angle Orthod 1981;51:93-114.
  2. Broadbent BH. The face of the normal child. Angle Orthod 1937;7:183-208.
  3. Brodie AG. On the growth pattern of the human head. From the third month to the eighth year of life. Am J Anat 1941;68:209-62. https://doi.org/10.1002/aja.1000680204
  4. Salzmann JA. The face in profile: an anthropological x-ray investigation on Swedish children and conscripts by Arne Bjork. Am J Orthod 1948;34:691-9. https://doi.org/10.1016/0002-9416(48)90083-9
  5. Downs WB. Variations in facial relationships; their significance in treatment and prognosis. Am J Orthod 1948;34:812-40. https://doi.org/10.1016/0002-9416(48)90015-3
  6. Steiner CC. Cephalometrics for you and me. Am J Orthod 1953;39:729-55. https://doi.org/10.1016/0002-9416(53)90082-7
  7. Sassouni V. A roentgenographic cephalometric analysis of cephalo-facio-dental relationships. Am J Orthod 1955;41:735-64. https://doi.org/10.1016/0002-9416(55)90171-8
  8. Tweed CH. Was the development of the diagnostic facial triangle as an accurate analysis based on fact or fancy? Am J Orthod 1962;48:823-40. https://doi.org/10.1016/0002-9416(62)90002-7
  9. Harvold EP. The role of function in the etiology and treatment of malocclusion. Am J Orthod 1968;54:883-98. https://doi.org/10.1016/0002-9416(68)90241-8
  10. Jacobson A. Application of the "Wits" appraisal. Am J Orthod 1976;70:179-89. https://doi.org/10.1016/S0002-9416(76)90318-3
  11. Jacobson A. The "Wits" appraisal of jaw disharmony. Am J Orthod. 1975;67:125-38. https://doi.org/10.1016/0002-9416(75)90065-2
  12. Burstone CJ, James RB, Legan H, Murphy GA, Norton LA. Cephalometrics for orthognathic surgery. J Oral Surg 1978;36:269-77.
  13. Ricketts RM. Perspectives in the clinical application of cephalometrics. The first fifty years. Angle Orthod 1981;51:115-50.
  14. McNamara JA Jr. A method of cephalometric evaluation. Am J Orthod 1984;86:449-69. https://doi.org/10.1016/S0002-9416(84)90352-X
  15. Yen PKJ. Identification Of Landmarks In Cephalometric Radiographs. Angle Orthod 1960;30:35-41.
  16. Marshall D. Interpretation of the posteroanterior skull radiograph- assembly of disarticulated bones. Dent Radiogr Photogr 1969;42:27-35.
  17. Baumrind S, Frantz RC. The reliability of head film measurements. Landmark identification. Am J Orthod 1971;60:111-27. https://doi.org/10.1016/0002-9416(71)90028-5
  18. Midtgard J, Bjork G, Linder-Aronson S. Reproducibility of cephalometric landmarks and errors of measurements of cephalometric cranial distances. Angle Orthod 1974;44:56-61.
  19. Cho HJ. A three-dimensional cephalometric analysis. J Clin Orthod 2009;43:235-52.
  20. Grayson BH, McCarthy JG, Bookstein F. Analysis of craniofacial asymmetry by multiplane cephalometry. Am J Orthod 1983;84:217-24. https://doi.org/10.1016/0002-9416(83)90129-X
  21. Baumrind S, Moffitt FH, Curry S. Three-dimensional x-ray stereometry from paired coplanar images: a progress report. Am J Orthod 1983;84:292-312. https://doi.org/10.1016/S0002-9416(83)90346-9
  22. Kusnoto B, Evans CA, BeGole EA, de Rijk W. Assessment of 3-dimensional computer-generated cephalometric measurements. Am J Orthod Dentofacial Orthop 1999;116:390-9. https://doi.org/10.1016/S0889-5406(99)70223-4
  23. Dale AM, Robert AD. A Clinician's Guide to Understanding Cone Beam Volumetric Imaging (CBVI). 2007 - [cited 2012 December 20]. Available from:http://www.Ineedce.com/courses/1413/PDF/A_Clin_Gde_ConeBeam.pdf
  24. Cavalcanti MG, Vannier MW. Quantitative analysis of spiral computed tomography for craniofacial clinical applications. Dentomaxillofac Radiol 1998;27:344-50. https://doi.org/10.1038/sj.dmfr.4600389
  25. Matteson SR, Bechtold W, Phillips C, Staab EV. A method for three-dimensional image reformation for quantitative cephalometric analysis. J Oral Maxillofac Surg 1989;47:1053-61. https://doi.org/10.1016/0278-2391(89)90180-8
  26. Christiansen EL, Thompson JR, Kopp S. Intra- and inter-observer variability and accuracy in the determination of linear and angular measurements in computed tomography. An in vitro and in situ study of human mandibles. Acta Odontol Scand 1986;44:221-9. https://doi.org/10.3109/00016358608997724
  27. Hildebolt CF, Vannier MW, Knapp RH. Validation study of skull three-dimensional computerized tomography measurements. Am J Phys Anthropol 1990;82:283-94. https://doi.org/10.1002/ajpa.1330820307
  28. Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol 2004;33:291-4. https://doi.org/10.1259/dmfr/25500850
  29. Schlicher W, Nielsen I, Huang JC, Maki K, Hatcher DC, Miller AJ. Consistency and precision of landmark identification in three-dimensional cone beam computed tomography scans. Eur J Orthod 2012;34:263-75. https://doi.org/10.1093/ejo/cjq144
  30. Grauer D, Cevidanes LS, Styner MA, Heulfe I, Harmon ET, Zhu H, Proffit WR. Accuracy and landmark error calculation using cone-beam computed tomography-generated cephalograms. Angle Orthod 2010;80:286-94. https://doi.org/10.2319/030909-135.1
  31. Park JW, Kim NK, Chang YI. Comparison of landmark position between conventional cephalometric radiography and CT scans projected to midsagittal plane. Korean J Orthod 2008;38:427-36. https://doi.org/10.4041/kjod.2008.38.6.427
  32. Kumar V, Ludlow JB, Mol A, Cevidanes L. Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofac Radiol 2007;36:263-9. https://doi.org/10.1259/dmfr/98032356
  33. Kumar V, Ludlow J, Soares Cevidanes LH, Mol A. In vivo comparison of conventional and cone beam CT synthesized cephalograms. Angle Orthod 2008;78:873-9. https://doi.org/10.2319/082907-399.1
  34. Terajima M, Yanagita N, Ozeki K, Hoshino Y, Mori N, Goto TK, Tokumori K, Aoki Y, Nakasima A. Three-dimensional analysis system for orthognathic surgery patients with jaw deformities. Am J Orthod Dentofacial Orthop 2008;134:100-11. https://doi.org/10.1016/j.ajodo.2006.06.027
  35. Terajima M, Endo M, Aoki Y, Yuuda K, Hayasaki H, Goto TK, Tokumori K, Nakasima A. Four-dimensional analysis of stomatognathic function. Am J Orthod Dentofacial Orthop 2008;134:276-87. https://doi.org/10.1016/j.ajodo.2006.09.061
  36. Suri S, Utreja A, Khandelwal N, Mago SK. Craniofacial computerized tomography analysis of the midface of patients with repaired complete unilateral cleft lip and palate. Am J Orthod Dentofacial Orthop 2008;134:418-29. https://doi.org/10.1016/j.ajodo.2006.09.065
  37. Kau CH, Richmond S. Three-dimensional analysis of facial morphology surface changes in untreated children from 12 to 14 years of age. Am J Orthod Dentofacial Orthop 2008;134:751-60. https://doi.org/10.1016/j.ajodo.2007.01.037
  38. Garrett BJ, Caruso JM, Rungcharassaeng K, Farrage JR, Kim JS, Taylor GD. Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2008;134:8-9. https://doi.org/10.1016/j.ajodo.2008.06.004
  39. Phatouros A, Goonewardene MS. Morphologic changes of the palate after rapid maxillary expansion: a 3-dimensional computed tomography evaluation. Am J Orthod Dentofacial Orthop 2008;134:117-24. https://doi.org/10.1016/j.ajodo.2007.05.015
  40. Ballanti F, Lione R, Fanucci E, Franchi L, Baccetti T, Cozza P. Immediate and post-retention effects of rapid maxillary expansion investigated by computed tomography in growing patients. Angle Orthod 2009;79:24-9. https://doi.org/10.2319/012008-35.1
  41. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three-dimensional CT scans. Cleft Palate Craniofac J 1997;34:111-6. https://doi.org/10.1597/1545-1569(1997)034<0111:COTROC>2.3.CO;2
  42. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-74. https://doi.org/10.2307/2529310
  43. Kim JY, Lee DK, Lee SH. Comparison of the observer reliability of cranial anatomic landmarks based on cephalometric radiograph and three-dimensional computed tomography scans. J Korean Assoc Oral Maxillofac Surg 2010;36:262-9. https://doi.org/10.5125/jkaoms.2010.36.4.262
  44. van Vlijmen OJ, Maal TJ, Berge′SJ, Bronkhorst EM, Katsaros C, Kuijpers-Jagtman AM. A comparison between two-dimensional and three-dimensional cephalometry on frontal radiographs and on cone beam computed tomography scans of human skulls. Eur J Oral Sci 2009;117:300-5. https://doi.org/10.1111/j.1600-0722.2009.00633.x
  45. Adams GL, Gansky SA, Miller AJ, Harrell WE Jr, Hatcher DC. Comparison between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop 2004;126:397-409. https://doi.org/10.1016/j.ajodo.2004.03.023