DOI QR코드

DOI QR Code

Production and Properties of Mannanase by a Bacillus amyloliquefaciens Isolate

Bacillus amyloliquefaciens 분리균의 Mannanase 생산성과 효소특성

  • Yoon, Ki-Hong (Food Science and Biotechnology Major, Woosong University)
  • 윤기홍 (우송대학교 바이오식품과학전공)
  • Received : 2014.03.17
  • Accepted : 2014.04.17
  • Published : 2014.06.30

Abstract

In the acidic LB plate, a bacterial strain was isolated from homemade soybean paste as a producer of the extracellular mannanase. The isolate YB-1402, which was a Gram-positive rod-shaped bacterium with spore, has been identified as Bacillus amyloliquefaciens on the basis of its 16S rDNA sequence and biochemical properties. Maximum mannanase productivity of the isolate YB-1402 was reached approximately 150 U/ml in LB broth supplemented with konjac (3.0%). The molecular mass of YB-1402 mannanase was estimated to approximately 38.0 kDa by zymogram of the culture filtrate on SDS-PAGE. The mannanase of culture filtrate was the most active at $55^{\circ}C$ and pH 5.5. The mannanase activity was completely maintained after pre-incubation at pH 3.0 to 10.0 for 1 h. The predominant products resulting from the mannanase hydrolysis were mannose, mannobiose and mannotriose for LBG or mannooligosaccharides. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose.

된장으로부터 mannanase 생산균으로 산성 배지에서 분리된 YB-1402는 그람양성 간균으로 포자를 형성하며, 16S rDNA 염기서열과 생화학적 성질이 Bacillus amyloliquefaciens와 가장 높은 유사도를 보였다. 분리균 YB-1402는 konjac을 3% 첨가한 LB 액체배지에서 약 150 U/ml의 최대 mannanase 생산성을 보였다. 분리균의 배양상등액을 사용하여 SDS-PAGE 활성염색을 실시한 결과 분자량이 약 38 kDa로 추정되는 한 종류의 mannanase만이 관찰되었으며, $55^{\circ}C$와 pH 5.5 반응조건에서 mannanase의 최대활성을 보였다. 특히 mannanase는 pH 3.0-10의 범위에서 1시간 방치하였을 때 실활되지 않은 특성을 지니고 있었다. Locust bean gum과 mannooligosaccharides를 mannanase로 분해하였을 때 mannose, mannobiose와 mannotriose가 최종 분해산물로 관찰되었으며 mannotriose 이상의 중합도를 갖는 mannooligosaccharides를 분해하는 것으로 확인되었다.

Keywords

References

  1. Dhawan, S. and Kaur, J. 2007. Microbial mannanases: an overview of production and applications. Crit. Res. Biotechnol. 27, 197-216. https://doi.org/10.1080/07388550701775919
  2. El-Helow, E.R., Sabry, S.A., and Khattab, A.A. 1997. Production of $\beta$ -mannanase by B. subtilis from agro-industrial by-products: screening and optimization. Antonie van Leeuwenhoek 71, 189-193. https://doi.org/10.1023/A:1000145632710
  3. Huang, J.L., Bao, L.X., Zou, H.Y., Che, S.G., and Wang, G.X. 2012. High-level production of a cold-active B-mannanase from Bacillus subtilis BS5 and its molecular cloning and expression. Mol. Gen. Mikrobiol. Virusol. 4, 14-17.
  4. Jiang, Z., Wei, Y., Li, D., Li, L., Chai, P., and Kusakabe, I. 2006. High-level production, purification and characterization of a thermostable $\beta$-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr. Polym. 66, 68-96.
  5. Katrolia, P., Yan, Q., Zhang, P., Zhou, P., Yang, S., and Jiang, Z. 2013. Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-$\beta$-mannanase from Rhizomucor miehei. J. Agric. Food Chem. 61, 394-401. https://doi.org/10.1021/jf303319h
  6. Kulcinskaja, E., Rosengren, A., Ibrahim, R., Kolenova, K., and Stalbrand, H. 2013. Expression and characterization of a Bifidobacterium adolescentis $\beta$-mannanase carrying mannanbinding and cell association motifs. Appl. Environ. Microbiol. 79, 133-140. https://doi.org/10.1128/AEM.02118-12
  7. Lu, H., Zhang, H., Shi, P., Luo, H., Wang, Y., Yang, P., and Yao, B. 2013. A family 5 $\beta$-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl. Microbiol. Biotechnol. 97, 8121-8128. https://doi.org/10.1007/s00253-012-4656-1
  8. Miller, M.L., Blum, R., Glennon, W.E., and Burton, A.L. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2, 127-132.
  9. Oh, Y.P., Lee, J.M., Cho, K.H., and Yoon, K.H. 2002. Isolation and enzyme production of a mannanase-producing strain, Bacillus sp. WL-3. Kor. J. Microbiol. Biotechnol. 30, 247-252.
  10. Srivastava, P.K. and Kapoor, M. 2014. Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Prep. Biochem. Biotechnol. 44, 392-417. https://doi.org/10.1080/10826068.2013.833108
  11. Summpunn, P., Chaijan, S., Isarangkul, D., Wiyakrutta, S., and Meevootisom, V. 2011. Characterization, gene cloning, and heterologous expression of $\beta$-mannanase from a thermophilic Bacillus subtilis. J. Microbiol. 49, 86-93. https://doi.org/10.1007/s12275-011-0357-1
  12. Vijayalaxmi, S., Prakash, P., Jayalakshmi, S.K., Mulimani, V.H., and Sreeramulu, K. 2013. Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl. Biochem. Biotechnol. 171, 382-395. https://doi.org/10.1007/s12010-013-0333-9
  13. Vu, T.T., Quyen, D.T., Dao, T.T., and Nguyen Sle, T. 2012. Cloning, high-level expression, purification, and properties of a novel endo-$\beta$ -1,4-mannanase from Bacillus subtilis G1 in Pichia pastoris. J. Microbiol. Biotechnol. 22, 331-338. https://doi.org/10.4014/jmb.1106.06052
  14. Wongputtisin, P., Khanongnuch, C., Khongbantad, W., Niamsup, P., and Lumyong, S. 2012. Screening and selection of Bacillus spp. for fermented corticate soybean meal production. J. Appl. Microbiol. 113, 798-806. https://doi.org/10.1111/j.1365-2672.2012.05395.x
  15. Yoon, K.H., Chung, S., and Lim, B.L. 2008. Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46, 344-349. https://doi.org/10.1007/s12275-008-0045-y
  16. Yoon, K.H. and Lim, B.L. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J. Microbiol. Biotechnol. 17, 1688-1694.
  17. Zhang, C., Chen, J.D., and Yang, F.Q. 2014. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr. Polym. 104, 175 -181. https://doi.org/10.1016/j.carbpol.2013.12.081
  18. Zhou, H., Yang, Y., Nie, X., Yang, W., and Wu, Y. 2013. Comparison of expression systems for the extracellular production of mannanase Man23 originated from Bacillus subtilis B23. Microb. Cell Fact. 12, 78. https://doi.org/10.1186/1475-2859-12-78
  19. Zhu, T., You, L., Gong, F., Xie, M., Xue, Y., Li, Y., and Ma, Y. 2011. Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline $\beta$-mannanase in Pichia pastoris. Enzyme Microb. Technol. 49, 407-412. https://doi.org/10.1016/j.enzmictec.2011.06.022

Cited by

  1. Comparison of Acidic pH and Temperature Stabilities between Two Bacillus Mannanases Produced from Recombinant Escherichia coli vol.50, pp.4, 2014, https://doi.org/10.7845/kjm.2014.4060
  2. Mannoside recognition and degradation by bacteria vol.92, pp.4, 2017, https://doi.org/10.1111/brv.12316
  3. Bacillus subtilis 분리균의 Mannanase와 Xylanase 생산성과 효소 특성 vol.43, pp.3, 2014, https://doi.org/10.4014/mbl.1507.07001