DOI QR코드

DOI QR Code

Immobilization of Metallocene inside the Aminosilane-Functionalized Nanopore of SBA-15 and MCM-41 and Its Ethylene Polymerization

아미노실란 기능화된 MCM-41과 SBA-15 세공 내 메탈로센 담지 및 에틸렌 중합

  • Celedonio, Jhulimar (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Jeong Suk (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2014.05.28
  • Accepted : 2014.06.10
  • Published : 2014.08.10

Abstract

The pore surface of mesoporous materials, SBA-15 and MCM-41 were functionalized with organosilanes, 3-aminopropyltrimethoxysilane (1NS) and N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS) via grafting method. $(n-BuCp)_2ZrCl_2$ and methylaluminoxane (MAO) were impregnated on the surface-functionalized mesoporous materials for the application to ethylene polymerization. In the case of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ supported Zr and Al contents decreased as grafted 2NS content increased. However, in the case of MCM-41/2NS/$(n-BuCp)_2ZrCl_2$ supported Al content decreased, but Zr content increased as grafted 2NS content increased. The polymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ increased as the amount of grafted 2NS increased. Increase in the amount of grafted 2NS should caused decrease in pore volume and diameter. Consequently, it decreased the amount of supported metallocene and MAO in general. However, the smaller pore-sized MCM-41 could have lower supported MAO content due to its large molecular size in case that MCM-41 was surface-functionalized with 2NS. Therefore, the supported metallocene content could increase and its polymerization activity was higher than that of SBA-15.

메조포러스 물질, SBA-15와 MCM-41의 세공 표면을 유기실란인 3-aminopropyltrimethoxysilane (1NS)와 N-[(3-trimethoxysilyl) propyl]ethylenediamine (2NS)를 이용하여 그라프팅법으로 표면 기능화하였다. 표면 기능화된 메조포러스 물질에 $(n-BuCp)_2ZrCl_2$와 조촉매 methylaluminoxane (MAO)를 담지하여 에틸렌 중합을 실시하였다. SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ 촉매는 그라프팅되는 2NS의 양이 증가할수록 담지된 Zr와 Al 함량은 감소하였으며, MCM-41/2NS/(n-BuCp)2ZrCl2 촉매는 2NS의 양이 증가할수록 Zr 함량은 증가하지만 Al 함량은 감소하였다. SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ 촉매의 중합 활성은 2NS의 투입량을 증가할수록 감소하였다. 이는 많은 양의 2NS가 표면에 그라프팅되는 경우 기공부피와 기공크기가 작아지게 되고 따라서 MAO와 메탈로센 촉매 담지량이 감소하게 되기 때문이다. 그러나 SBA-15보다 작은 기공을 갖는 MCM-41을 2NS로 표면 기능화되면 큰 분자 크기를 갖는 조촉매 MAO는 담지 되기 어려워 낮은 MAO 담지량을 갖게 된다. 따라서 메탈로센 담지량은 약간 증가하게 되고 이에 따라 중합 활성이 증가하였다.

Keywords

References

  1. M. H. Lim and A. Stein, Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials, Chem. Mater., 11, 3285-3295 (1999). https://doi.org/10.1021/cm990369r
  2. J. C. Vartuli, K. D. Schmitt, C. T. Kresge,W. J. Roth, M. E. Leonowicz, S. B. McCullen, S. D. Hellring, J. S. Beck, J. L. Schlenker, D. H. Olson, and E. W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114, 10834-10843 (1992). https://doi.org/10.1021/ja00053a020
  3. L. Mercier and T. Pinnavaia, Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater., 9, 500-503 (1997). https://doi.org/10.1002/adma.19970090611
  4. P. Sutra and D. Brunel, Preparation of MCM-41 type silica-bound manganese(III) schiff-base complexes, Chem. Commun., 21, 2485-2486 (1996).
  5. K. Moller and T. Bein, Inclusion chemistry in periodic mesoporous hosts, Chem. Mater., 10, 2950-2963 (1998). https://doi.org/10.1021/cm980243e
  6. X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu, and K. M. Kemner, Functionalized monolayers on ordered mesoporous supports, Science, 276, 923-926 (1997). https://doi.org/10.1126/science.276.5314.923
  7. D. S. Shepard, W. Zhou, T. Maschmeyer, J. M. Matters, C. L Roper, S. Parsons, B. F. G. Johnson, and M. J. Duer, Site-directed surface derivatization of MCM-41: use of high-resolution transmission electron microscopy and molecular recognition for determining the position of functionality within mesoporous materials, Angew. Chem. Int. Ed., 37, 2719-2723 (1998). https://doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2719::AID-ANIE2719>3.0.CO;2-6
  8. J. S. Lee, J.-H. Yim, J.-K. Jeon, and Y. S. Ko, Polymerization of olefins with single-site catalyst anchored on amine-functionalized surface of SBA-15, Catal. Today, 185, 175-182 (2012). https://doi.org/10.1016/j.cattod.2011.12.003
  9. J. S. Lee and Y. S. Ko, Control of the molecular structure of ethylene-1-hexene copolymer by surface functionalization of SBA-15 with different compositions of amine groups, J. Mol. Cat. A: Chem., 386, 120-125 (2014). https://doi.org/10.1016/j.molcata.2014.01.015
  10. S. Y. Lee and Y. S. Ko, Preparation of single-site catalyst inside the functionalized nanopore of silica and its ethylene polymerization, J. Nanosci. Nanotech., 13, 4401-4404 (2013). https://doi.org/10.1166/jnn.2013.7008
  11. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores, Science, 279, 548-552 (1998). https://doi.org/10.1126/science.279.5350.548
  12. T. Yokoi, H. Yoshitake, and T. Tatsnmi, Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes, J. Mater. Chem., 14, 951-957 (2004). https://doi.org/10.1039/b310576h