DOI QR코드

DOI QR Code

Sterilization of Scoria Powder by Corona Discharge Plasma

코로나 방전 플라즈마를 이용한 화산암재 분말 살균

  • Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Lee, Ho Won (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • 조진오 (제주대학교 생명화학공학과) ;
  • 이호원 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과)
  • Received : 2014.04.29
  • Accepted : 2014.06.17
  • Published : 2014.08.10

Abstract

Atmospheric-pressure nonthermal corona discharge plasma was applied to the sterilization of biologically contaminated scoria powder. Escherichia coli (E. coli) culture solution was uniformly sprayed throughout the scoria powder for artificial inoculation, which was well mixed to ensure uniformity of the batch. The effect of the key parameters such as discharge power, treatment time, type of gas and electrode distance on the sterilization efficiency was examined and discussed. The experimental results revealed that the plasma treatment was very effective for the sterilization of scoria powder; 5-min treatment at 15 W could sterilize more than 99.9% of E. coli inoculated into the scoria powder. Increasing the discharge power, treatment time or applied voltage led to an improvement in the sterilization efficiency. The effect of type of gas on the sterilization efficiency was in order of oxygen, synthetic air (20% oxygen) and nitrogen from high to low. The inactivation of E. coli under the influence of corona discharge plasma can be explained by cell membrane erosion or etching resulting from UV and reactive oxidizing species (oxygen radical, OH radical, ozone, etc.), and the destruction of E. coli cell membrane by the physical action of numerous corona streamers.

본 연구에서는 상압 저온 코로나 방전 플라즈마를 화산암재(스코리아) 분말의 살균에 적용하였다. 스코리아 분말에 Escherichia coli (E. coli) 배양액을 살포하여 균일하게 혼합한 후, 코로나 방전 플라즈마 특성 인자인 방전전력, 방전시간, 주입기체, 전극간격 등의 조건을 변화시키며 E. coli 살균효율을 조사하였다. 실험 결과 상압 저온 코로나 방전 플라즈마는 분말상의 스코리아 살균에 아주 효과적인 것으로 나타났으며, 방전전력 15 W에서 5 min 동안 살균한 결과 E. coli가 99.9% 이상 사멸하였다. 방전전력, 방전시간, 인가전압이 증가할수록 사멸율이 향상되었다. 반응기에 주입되는 기체의 종류에 따른 살균력 실험 결과, 산소 > 모사공기(산소 20%) > 질소 순으로 나타났다. 코로나 방전 플라즈마에 의한 E. coli 살균은 자외선과 활성산화종(산소라디칼, OH라디칼, 오존 등)에 의한 세포막 침식 및 에칭, 그리고 플라즈마 방전 스트리머에 의한 대장균 세포막 파괴로 설명할 수 있다.

Keywords

References

  1. S. K. Kam, S. S. Hyun, and M. G. Lee, Adsorption of lead ion by zeolites synthesized from Jeju scoria, J. Environ. Sci., 20, 1437-1445 (2011). https://doi.org/10.5322/JES.2011.20.11.1437
  2. J. D. Ko and W. J. Choi, The magnetic properties of iron compounds of the scoria in north-eastern area of Jeju island, J. Korean Magnetic. Soc., 21, 37-41 (2011). https://doi.org/10.4283/JKMS.2011.21.1.037
  3. S. H. Moon, H. W. Lee, J. H. Kim, K. G. Kang, and Y. S. Mok, Characteristics of volcanic cinders and their adsorption trait for heavy metal removal, Res. J. Chem. Environ., 15, 920-927 (2011).
  4. M. Takechi, Y. Miyamoto, Y. Momota, T. Yuasa, S. Tatehara, M. Nagayama, and K. Ishikawa, Effects of various sterilization methods on the setting and mechanical properties of apatite cement, J. Biomed. Mater. Res. B. Appl. Biomater., 69B, 58-63 (2004). https://doi.org/10.1002/jbm.b.10031
  5. K. G. Kostov, V. Rocha, C. Y. Koga-Ito, B. M. Matos, M. A. Algatti, R. Y. Honda, M. E. Kayama, and R. P. Mota, Bacterial sterilization by a dielectric barrier discharge (DBD) in air, Surf. Coat. Technol., 204, 2954-2959 (2010). https://doi.org/10.1016/j.surfcoat.2010.01.052
  6. M. Laroussi and F. Leipold, Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure, Int. J. Mass Spectrom., 233, 81-86 (2004). https://doi.org/10.1016/j.ijms.2003.11.016
  7. M. Laroussi, Low temperature plasma-based sterilization: overview and state-of-the-art, Plasma Proc. Polym., 2, 391-400 (2005). https://doi.org/10.1002/ppap.200400078
  8. H. Miao and G. Yun, The sterilization of Escherichia coli by dielectric-barrier discharge plasma at atmospheric pressure, Appl. Surf. Sci., 257, 7065-7070 (2011). https://doi.org/10.1016/j.apsusc.2011.03.014
  9. K. N. Lee, K. H. Paek, W. T. Ju, and Y. H. Lee, Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen, J. Microbiol., 44, 269-275 (2006).
  10. J. H. Choi, I. Han, H. K. Baik, M. H. Lee, D. W. Han, J. C. Park, I. S. Lee, K. M. Song, and Y. S. Lim, Analysis of sterilization effect by pulsed dielectric barrier discharge, J. Electrostat., 64, 17-22 (2006). https://doi.org/10.1016/j.elstat.2005.04.001
  11. M. Moreau, N. Orange, and M. G. J. Feuilloley, Non-thermal plasma technologies: new tools for bio-decontamination, Biotechnol. Adv., 26, 610-617 (2008). https://doi.org/10.1016/j.biotechadv.2008.08.001
  12. A. H. Sari and F. Fadaee, Effect of corona discharge on decontamination of Pseudomonas aeruginosa and E-coli, Surf. Coat. Technol., 205, S385-S390 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.057
  13. J. L. Liang, S. H. Zheng, and S. Y. Ye, Inactivation of Penicillium aerosols by atmospheric positive corona discharge processing, J. Aerosol Sci., 54, 103-112 (2012). https://doi.org/10.1016/j.jaerosci.2012.07.009
  14. J. Julak, V. Scholtz, S. Kotucova, and O. Janouskova, The persistent microbicidal effect in water exposed to the corona discharge, Phys. Medica, 28, 230-239 (2012). https://doi.org/10.1016/j.ejmp.2011.08.001
  15. H. Liu, J. Chen, L. Yang, and Y. Zhou, Long-distance oxygen plasma sterilization: effects and mechanisms, Appl. Surf. Sci., 254, 1815-1821 (2008). https://doi.org/10.1016/j.apsusc.2007.07.152
  16. M. H. Cho, E. K. Bae, S. D. Ha, Y. S. Park, C. K. Mok, K. P. Hong, S. P. Kim, and J. Y. Park, Evaluation of dry rehydratable film method for enumeration of microorganisms in meat, dairy and fishery products, Korean J. Food Sci. Technol., 37, 294-300 (2005).
  17. L. Yang, J. Chen, and J. Gao, Low temperature argon plasma sterilization effect on Pseudomonas aeruginosa and its mechanisms, J. Electrostat., 67, 646-651 (2009). https://doi.org/10.1016/j.elstat.2009.01.060

Cited by

  1. 대기압 유전체장벽방전 플라즈마에 의한 건고추의 식중독균 살균효과 및 품질변화 vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.960
  2. 대기압 유전체장벽방전 플라즈마에 의한 식품유해 미생물 살균 vol.32, pp.3, 2014, https://doi.org/10.13103/jfhs.2017.32.3.222
  3. 유연전극 구조를 가진 플라즈마 발생장치를 이용한 미생물 살균 효과 연구 vol.33, pp.1, 2020, https://doi.org/10.4313/jkem.2020.33.1.70
  4. 황색포도알균과 녹농균에 대한 유연전극 구조를 갖는 플라즈마 발생기의 멸균효과 평가 vol.52, pp.4, 2020, https://doi.org/10.15324/kjcls.2020.52.4.372