DOI QR코드

DOI QR Code

Nanocatalyst Materials Prepared by Arc Plasma Deposition

아크플라즈마 증착을 이용한 나노촉매 재료 제작

  • Kim, Sang Hoon (Center for Materials Architecturing, Korea Institute of Science and Technology)
  • 김상훈 (한국과학기술연구원 물질구조제어연구단)
  • Received : 2014.07.10
  • Published : 2014.08.10

Abstract

Catalyst nanoparticles are prepared by arc plasma deposition (APD). First, overview of the APD technique is reviewed and second, some applications of the technique for nanocatalyst preparation are reviewed. Nanoparticles prepared by APD are typically 1~5 nm in size and their catalytic activity is generally better than that of conventional wet-chemically prepared nanocatalysts.

아크플라즈마를 이용해 촉매입자를 촉매지지체에 건식으로 직접 분산하는 기술에 대한 개괄과 응용사례를 소개한다. 이 방법은 촉매입자를 담지하는 일반적인 방법인 습식법의 단점을 개선하고자 촉매입자를 기화하여 직접 담지체에 증착하는 방법이다. 아크플라즈마 증착을 이용해 제작한 촉매재료의 성능을 연구한 사례 세가지를 소개한다. 이 사례들을 통해 이 방법으로 증착되는 나노입자의 크기가 1~5 nm 정도이고 일반적으로 습식 방법보다 촉매성능면에서 우수한 성능을 나타낸다는 것을 보인다.

Keywords

References

  1. G. Ertl, H. Knozinger, and J. Weitkamp, Preparation of solid catalysts, Wiley-VCH, Weinheim; New York (1999).
  2. J. Park, C. Aliaga, J. R. Renzas, H. Lee, and G. Somorjai, The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation, Catal. Lett., 129, 1-6 (2009). https://doi.org/10.1007/s10562-009-9871-8
  3. J. N. Kuhn, C.-K. Tsung, W. Huang, and G. A. Somorjai, Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation, J. Catal., 265, 209-21 (2009). https://doi.org/10.1016/j.jcat.2009.05.001
  4. S. H. Kim and J. Y. Park, Non-Colloidal Nanocatalysts Fabricated with Nanolithography and Arc Plasma Deposition. In: J. Y. Park (ed.). Current trends of surface science and catalysis, 45-64, Springer, New York (2014).
  5. Y. Agawa, S. Endo, M. Matsuura, and Y. Ishii, Behaviors of Metal Nano-particles Prepared by Coaxial Vacuum Arc Deposition, in Multi-Functional Materials and Structures Iii, Pts 1 and 2, Trans Tech Publications Ltd, Stafa-Zurich, 1067-1070 (2010).
  6. K. Qadir, S. H. Kim, S. M. Kim, H. Ha, and J. Y. Park, Support Effect of Arc Plasma Deposited Pt Nanoparticles/$TiO_2$ Substrate on Catalytic Activity of CO Oxidation, J. Phys. Chem. C., 116, 24054-24059 (2012). https://doi.org/10.1021/jp306461v
  7. S. H. Kim, C.-H. Jung, N. Sahu, D. Park, J. Y. Yun, H. Ha, and J. Y. Park, Catalytic activity of Au/$TiO_2$ and Pt/$TiO_2$ nanocatalysts prepared with arc plasma deposition under CO oxidation, Appl. Catal. A: General, 454, 53-58 (2013). https://doi.org/10.1016/j.apcata.2012.12.049
  8. H. Randhawa, CATHODIC ARC PLASMA DEPOSITION TECHNOLOGY, Thin Solid Films, 167, 175-185 (1988). https://doi.org/10.1016/0040-6090(88)90494-4
  9. A. Anders, Cathodic arcs: from fractal spots to energetic condensation, Springer, New York (2008).
  10. S. H. Kim, Y. E. Jeong, H. Ha, J. Y. Byun, and Y. D. Kim, Ultra-small platinum and gold nanoparticles by arc plasma deposition, Appl. Surf. Sci., 297, 52-58 (2014). https://doi.org/10.1016/j.apsusc.2014.01.072
  11. S.-Y. Chun and A. Chayahara, Pulsed vacuum arc deposition of multilayers in the nanometer range, Surf. and Coat. Tech., 132, 217-221 (2000). https://doi.org/10.1016/S0257-8972(00)00850-1
  12. K. Hayek, M. Fuchs, B. Klotzer, W. Reichl, and G. Rupprechter, Studies of metal-support interactions with "real" and "inverted" model systems: reactions of CO and small hydrocarbons with hydrogen on noble metals in contact with oxides, Top. Catal., 13, 55-66 (2000). https://doi.org/10.1023/A:1009072519733
  13. M. Valden, X. Lai, and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science, 281, 1647-1650 (1998). https://doi.org/10.1126/science.281.5383.1647
  14. M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, CATTECH, 6, 102-115 (2002). https://doi.org/10.1023/A:1020181423055
  15. M. Anpo, M. Onaka, and H. Yamashita, Science and technology in catalysis 2002: proceedings of the Fourth Tokyo Conference on Advanced Catalytic Science and Technology, Tokyo, July 14-19, 2002, Kodansha; Elsevier, Tokyo, Amsterdam; Boston (2003).
  16. M. S. Chen and D. W. Goodman, Structure-activity relationships in supported Au catalysts, Catal. Today, 111, 22-33 (2006). https://doi.org/10.1016/j.cattod.2005.10.007
  17. M. Boronat and A. Corma, Origin of the different activity and selectivity toward hydrogenation of single metal Au and Pt on $TiO_2$ and bimetallic Au-Pt/$TiO_2$ catalysts, Langmuir, 26, 16607-16614 (2010). https://doi.org/10.1021/la101752a
  18. B. Naik, S. M. Kim, C. H. Jung, S. Y. Moon, S. H. Kim, and J. Y. Park, Hydrogen Generation: Enhanced $H_2$ Generation of Au-Loaded, Nitrogen-Doped $TiO_2$ Hierarchical Nanostructures under Visible Light, Adv. Mater. Interfaces, 1, 1300018 (2014). https://doi.org/10.1002/admi.201300018
  19. H. Oveisi, S. Rahighi, X. F. Jiang, Y. Agawa, A. Beitollahi, S. Wakatsuki, and Y. Yamauchi, Improved Inactivation Effect of Bacteria: Fabrication of Mesoporous Anatase Films with Fine Ag Nanoparticles Prepared by Coaxial Vacuum Arc Deposition, Chem. Lett., 40, 420-422 (2011). https://doi.org/10.1246/cl.2011.420
  20. T. Ito, M. Kunimatsu, S. Kaneko, Y. Hirabayashi, M. Soga, Y. Agawa, and K. Suzuki, High performance of hydrogen peroxide detection using Pt nanoparticles-dispersed carbon electrode prepared by pulsed arc plasma deposition, Talanta, 99, 865-870 (2012). https://doi.org/10.1016/j.talanta.2012.07.048

Cited by

  1. The Effect of Pre-Treatment Methods for the Life Time of the Insoluble Electrodes vol.38, pp.6, 2016, https://doi.org/10.4491/KSEE.2016.38.6.291