DOI QR코드

DOI QR Code

Association of the XRCC1 c.1178G>A Genetic Polymorphism with Lung Cancer Risk in Chinese

  • Wang, Lei (Department of Respiratory Medicine, Shandong Jining NO.1 People's Hospital) ;
  • Lin, Yong (Department of Respiratory Medicine, Shandong Jining NO.1 People's Hospital) ;
  • Qi, Cong-Cong (Department of Respiratory Medicine, Shandong Jining NO.1 People's Hospital) ;
  • Sheng, Bao-Wei (Department of Respiratory Medicine, Shandong Jining NO.1 People's Hospital) ;
  • Fu, Tian (Department of Respiratory Medicine, Shandong Jining NO.1 People's Hospital)
  • Published : 2014.05.15

Abstract

The X-ray repair cross-complementing group 1 protein (XRCC1) plays important roles in the DNA base excision repair pathway which may influence the development of lung cancer. This study aimed to evaluate the potential association of the XRCC1 c.1178G>A genetic polymorphism with lung cancer risk. The created restriction site-polymerase chain reaction (CRS-PCR) and DNA sequencing methods were utilized to evaluate the XRCC1 c.1178G>A genetic polymorphism among 376 lung cancer patients and 379 controls. Associations between the genetic polymorphism and lung cancer risk were determined with an unconditional logistic regression model. Our data suggested that the distribution of allele and genotype in lung cancer patients was significantly different from that of controls. The XRCC1 c.1178G>A genetic polymorphism was associated with an increased risk of lung cancer (AA vs GG: OR=2.91, 95%CI 1.70-4.98, p<0.001; A vs G: OR=1.52, 95%CI 1.22-1.90, p<0.001). The allele A and genotype AA may contribute to risk of lung cancer. These preliminary results suggested that the XRCC1 c.1178G>A genetic polymorphism is statistically associated with lung cancer risk in the Chinese population.

Keywords

References

  1. Butkiewicz D, Rusin M, Sikora B, et al (2011). An association between DNA repair gene polymorphisms and survival in patients with resected non-small cell lung cancer. Mol Biol Rep, 38, 5231-41. https://doi.org/10.1007/s11033-010-0674-1
  2. Chang JS, Wrensch MR, Hansen HM, et al (2009). Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans. Carcinogenesis, 30, 78-87. https://doi.org/10.1093/carcin/bgn261
  3. Chen J, Zhao QW, Shi GM, Wang LR (2012). XRCC1 Arg399Gln and clinical outcome of platinum-based treatment for advanced non-small cell lung cancer: a meta-analysis in 17 studies. J Zhejiang Univ Sci B, 13, 875-83.
  4. Cui Z, Yin Z, Li X, et al (2012). Association between polymorphisms in XRCC1 gene and clinical outcomes of patients with lung cancer: a meta-analysis. BMC Cancer, 12, 71. https://doi.org/10.1186/1471-2407-12-71
  5. Dai L, Duan F, Wang P, et al (2012). XRCC1 gene polymorphisms and lung cancer susceptibility: a meta-analysis of 44 case-control studies. Mol Biol Rep, 39, 9535-47. https://doi.org/10.1007/s11033-012-1818-2
  6. Giachino DF, Ghio P, Regazzoni S, et al (2007). Prospective assessment of XPD Lys751Gln and XRCC1 Arg399Gln single nucleotide polymorphisms in lung cancer. Clin Cancer Res, 13, 2876-81. https://doi.org/10.1158/1078-0432.CCR-06-2543
  7. Guilbert JJ (2003). The world health report 2002-reducing risks, promoting healthy life. Educ Health, 16, 230. https://doi.org/10.1080/1357628031000116808
  8. Guo QX, Yang WH, Zhai JF, et al (2013). XRCC1 codon 280 polymorphism and susceptibility to lung cancer: a meta-analysis of the literatures. Tumour Biol, 34, 2989-94. https://doi.org/10.1007/s13277-013-0863-3
  9. Guo S, Li X, Gao M, et al (2013). The relationship between XRCC1 and XRCC3 gene polymorphisms and lung cancer risk in northeastern Chinese. PLoS One, 8, 56213. https://doi.org/10.1371/journal.pone.0056213
  10. Haliassos A, Chomel JC, Tesson L, et al (1989). Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res, 17, 3606. https://doi.org/10.1093/nar/17.9.3606
  11. Hao B, Miao X, Li Y, et al (2006). A novel T-77C polymorphism in DNA repair gene XRCC1 contributes to diminished promoter activity and increased risk of non-small cell lung cancer. Oncogene, 25, 3613-20. https://doi.org/10.1038/sj.onc.1209355
  12. Huang G, Cai S, Wang W, et al (2013). Association between XRCC1 and XRCC3 polymorphisms with lung cancer risk: a meta-analysis from case-control studies. PLoS One, 8, 68457. https://doi.org/10.1371/journal.pone.0068457
  13. Huang J, Zhang J, Zhao Y, et al (2011). The Arg194Trp polymorphism in the XRCC1 gene and cancer risk in Chinese Mainland population: a meta-analysis. Mol Biol Rep, 38, 4565-73. https://doi.org/10.1007/s11033-010-0588-y
  14. Kalikaki A, Kanaki M, Vassalou H, et al (2009). DNA repair gene polymorphisms predict favorable clinical outcome in advanced non-small-cell lung cancer. Clin Lung Cancer, 10, 118-23. https://doi.org/10.3816/CLC.2009.n.015
  15. Karkucak M, Yakut T, Evrensel T, et al (2012). XRCC1 gene polymorphisms and risk of lung cancer in Turkish patients. Int J Hum Genet, 2, 113-7.
  16. Ke HG, Li J, Shen Y, et al (2012). Prognostic significance of GSTP1, XRCC1 and XRCC3 polymorphisms in non-small cell lung cancer patients. Asian Pac J Cancer Prev, 13, 4413-16. https://doi.org/10.7314/APJCP.2012.13.9.4413
  17. Letkova L, Matakova T, Musak L, et al (2013). DNA repair genes polymorphism and lung cancer risk with the emphasis to sex differences. Mol Biol Rep, 40, 5261-73. https://doi.org/10.1007/s11033-013-2626-z
  18. Li D, Zhou Q, Liu Y, et al (2012). DNA repair gene polymorphism associated with sensitivity of lung cancer to therapy. Med Oncol, 29, 1622-28. https://doi.org/10.1007/s12032-011-0033-7
  19. Li W, Li K, Zhao L, Zou H (2013). DNA repair pathway genes and lung cancer susceptibility: A meta-analysis. Gene, 538, 361-5.
  20. Li Y, Huang XE, Jin GF, et al (2011). Lack of any relationship between chemotherapy toxicity in non-small cell lung cancer cases and polymorphisms in XRCC1 codon 399 or XPD codon 751. Asian Pac J Cancer Prev, 12, 739-42.
  21. Li Y, Huang Y, Cao YS, et al (2013). Assessment of the association between XRCC1 Arg399Gln polymorphism and lung cancer in Chinese. Tumour Biol, 34, 3681-5. https://doi.org/10.1007/s13277-013-0950-5
  22. Lopez-Cima MF, Gonzalez-Arriaga P, Garcia-Castro L, et al (2007). Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. BMC Cancer, 7, 162. https://doi.org/10.1186/1471-2407-7-162
  23. Natukula K, Jamil K, Pingali UR, et al (2013). The codon 399 Arg/Gln XRCC1 polymorphism is associated with lung cancer in Indians. Asian Pac J Cancer Prev, 14, 5275-79. https://doi.org/10.7314/APJCP.2013.14.9.5275
  24. Ouyang FD, Yang FL, Chen HC, et al (2013). Polymorphisms of DNA repair genes XPD, XRCC1, and OGG1, and lung adenocarcinoma susceptibility in Chinese population. Tumour Biol, 34, 2843-48. https://doi.org/10.1007/s13277-013-0844-6
  25. Perez-Morales R, Mendez-Ramirez I, Castro-Hernandez C, et al (2011). Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: Application of the additive model for cancer. Genet Mol Biol, 34, 546-52. https://doi.org/10.1590/S1415-47572011005000053
  26. Qian B, Zhang H, Zhang L, et al (2011). Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk. Lung Cancer, 73, 138-46. https://doi.org/10.1016/j.lungcan.2010.11.018
  27. Rybarova S, Hodorova I, Muri J, et al (2011). Prognostic significance of p53 protein and X-ray repair cross-complementing protein 1 in non-small cell lung cancer. Tumori, 97, 79-85. https://doi.org/10.1177/030089161109700115
  28. Siegel R, Naishadham D, Jemal A (2012). Cancer statistics, 2012. CA Cancer J Clin, 62, 10-29. https://doi.org/10.3322/caac.20138
  29. Sreeja L, Syamala VS, Syamala V, et al (2008). Prognostic importance of DNA repair gene polymorphisms of XRCC1 Arg399Gln and XPD Lys751Gln in lung cancer patients from India. J Cancer Res Clin Oncol, 134, 645-52. https://doi.org/10.1007/s00432-007-0328-4
  30. Sun Y, Zhang YJ, Kong XM (2013). No association of XRCC1 and CLPTM1L polymorphisms with non-small cell lung cancer in a non-smoking Han Chinese population. Asian Pac J Cancer Prev, 14, 5171-4. https://doi.org/10.7314/APJCP.2013.14.9.5171
  31. Viktorsson K, De Petris L, Lewensohn R (2005). The role of p53 in treatment responses of lung cancer. Biochem Biophys Res Commun, 331, 868-80. https://doi.org/10.1016/j.bbrc.2005.03.192
  32. Wang JY, Cai Y (2013). X-ray repair cross-complementing group 1 codon 399 polymorphism and lung cancer risk: an updated meta-analysis. Tumour Biol, 35, DOI: 10.1007/s13277-014-1702-x.
  33. Wang L, Chen Z, Wang Y, et al (2014). The association of c.1471G>A genetic polymorphism in XRCC1 gene with lung cancer susceptibility in Chinese Han population. Tumour Biol.
  34. Wang R, Zhang Y, Zhang J, Zhi X (2014). Association of X-ray repair cross-complementing group 1 promoter rs3213245 polymorphism with lung cancer risk. Tumour Biol, 35, 1739-43. https://doi.org/10.1007/s13277-013-1435-2
  35. Wang Y, Yang H, Li H, et al (2009). Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Lett, 285, 134-40. https://doi.org/10.1016/j.canlet.2009.05.005
  36. Wu T, Xu YH, Ye XL (2013). X-ray repair cross-complementing group 1 Arg194Trp polymorphism is associated with increased risk of lung cancer in Chinese Han population. Tumour Biol, 34, 2611-5. https://doi.org/10.1007/s13277-013-0810-3
  37. Yin J, Vogel U, Ma Y, et al (2009). Association of DNA repair gene XRCC1 and lung cancer susceptibility among nonsmoking Chinese women. Cancer Genet Cytogenet, 188, 26-31. https://doi.org/10.1016/j.cancergencyto.2008.08.013
  38. Yin Z, Zhou B, He Q, et al (2009). Association between polymorphisms in DNA repair genes and survival of non-smoking female patients with lung adenocarcinoma. BMC Cancer, 9, 439. https://doi.org/10.1186/1471-2407-9-439
  39. Yuan Z, Zeng X, Yang D, et al (2013). Effects of common polymorphism rs11614913 in Hsa-miR-196a2 on lung cancer risk. PLoS One, 8, 61047. https://doi.org/10.1371/journal.pone.0061047
  40. Yuan ZR, Li J, Li JY, et al (2013). SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 gene. Mol Biol Rep, 40, 7-12. https://doi.org/10.1007/s11033-012-1934-z
  41. Yuan ZR, Li JY, Li J, et al (2013). Effects of DGAT1 gene on meat and carcass fatness quality in Chinese commercial cattle. Mol Biol Rep, 40, 1947-54. https://doi.org/10.1007/s11033-012-2251-2
  42. Yuan ZR, Li JY, Li J, et al (2012). Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle. Gene, 505, 190-4. https://doi.org/10.1016/j.gene.2012.05.010
  43. Zhang J, Zeng XT, Lei JR, et al (2014). No association between XRCC1 gene Arg194Trp polymorphism and risk of lung cancer: evidence based on an updated cumulative meta-analysis. Tumour Biol, 35, DOI: 10.1007/s13277-014-1745-z.
  44. Zhang Q, Jin H, Wang L, et al (2014). Lung cancer risk and genetic variants in East Asians: a meta-analysis. Tumour Biol, 35, DOI:10.1007/s13277-014-1671-0.
  45. Zhao CJ, Li N, Deng XM (2003). The establishment of method for identifying SNP genotype by CRS-PCR. Yi Chuan, 25, 327-9.

Cited by

  1. Updated Assessment of the Association of the XRCC1 Arg399Gln Polymorphism with Lung Cancer Risk in the Chinese Population vol.16, pp.2, 2015, https://doi.org/10.7314/APJCP.2015.16.2.495