A Study on lung dose of Intensity modulated and volumetric modulated arc therapy plans using restricted angle of Non-small cell lung cancer

비소세포 폐암의 제한된 각도를 이용한 세기변조와 용적변조회전 방사선치료계획의 폐 선량에 관한 연구

  • Yeom, Misuk (Department of Radiation Oncology, ASAN Medical Center) ;
  • Lee, Woosuk (Department of Radiation Oncology, ASAN Medical Center) ;
  • Kim, Daesup (Department of Radiation Oncology, ASAN Medical Center) ;
  • Back, Geummun (Department of Radiation Oncology, ASAN Medical Center)
  • 염미숙 (서울아산병원 방사선종양학과) ;
  • 이우석 (서울아산병원 방사선종양학과) ;
  • 김대섭 (서울아산병원 방사선종양학과) ;
  • 백금문 (서울아산병원 방사선종양학과)
  • Received : 2014.03.21
  • Accepted : 2014.04.30
  • Published : 2014.06.30

Abstract

Purpose : For non-small cell lung cancer, if the treatment volume is large or the total lung volume is small, and the tumor is located in midline of patient's body, total lung dose tends to increase due to tolerance dose of spinal cord. The purpose of this study is to compare and evaluate the total lung dose of three dimensional conformal radiotherapy(3D CRT), intensity modulated radiotherapy(IMRT) and volumetric modulated arc therapy(VMAT) using restricted angle for non-small cell lung cancer patients. Materials and Methods : The treatment plans for four patients, being treated on TrueBeam STx($Varian^{TM}$, USA) with 10 MV and prescribed dose of 60 Gy in 30 fractions, 3D CRT, restricted angle IMRT and VAMT radiotherapy plans were established. Planning target volume(PTV), dose to total lung and spinal cord were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV, $V_{30}$, $V_{20}$, $V_{10}$, $V_5$, mean dose for total lung and maximum dose for spinal cord was assessed. Results : Average value of CI, HI and PCI for PTV was $0.944{\pm}0.009$, $1.106{\pm}0.027$, $1.084{\pm}0.016$ respectively. $V_{20}$ values from 3D CRT, IMRT and VMAT plans were 30.7%, 20.2% and 21.2% for the first patient, 33.0%, 29.2% and 31.5% for second patient, 51.3%, 34.3% and 36.9% for third patient, finally 56.9%, 33.7% and 40.0% for the last patient. It was noticed that the $V_{20}$ was lowest in the IMRT plan using restricted angle. Maximum dose for spinal cord was evaluated to lower than the tolerance dose. Conclusion : For non-small cell lung cancer, IMRT with restricted angle or VMAT could minimize the lung dose and lower the dose to spinal cord below the tolerance level. Considering PTV coverage and tolerance dose to spinal cord, it was possible to obtain IMRT plan with smaller angle and this could result in lower dose to lung when compared to VMAT.

목 적 : 비소세포 폐암의 치료용적의 크기가 크거나 폐 용적이 작고, 몸의 정중선(Mid line)에 위치한 경우 척수의 허용선량을 고려한 방사선치료계획에서 폐 선량이 많아지게 되는데, 본 연구는 비소세포 폐암 환자의 3차원입체조형치료(Three dimensional conformal radiotherapy, 3D CRT), 제한된 각도를 이용한 세기변조방사선치료(Intensity modulated radiotherapy, IMRT)와 용적변조회전치료(Volumetric Modulated Arc therapy, VMAT) 치료계획을 각각 적용하여 전체 폐 선량을 비교 및 평가하고자 한다. 대상 및 방법 : TrueBeam STx($Varian^{TM}$, USA) 10 MV 에너지를 이용하여 4명의 환자에 대하여 3D CRT, 제한된 각도를 이용한 IMRT와 VMAT 치료계획을 세우고, 총 선량 66 Gy/30 Fx 처방하였을 때, 선량용적히스토그램(Dose Volume Histogram, DVH)을 이용하여 치료계획용적(Planning Target Volume, PTV), 전체 폐 그리고 척수에 들어가는 선량을 평가하였다. PTV에 대한 처방선량지수(Conformity Index, CI), 선량균질지수(Homogeneity index, HI), 처방선량포함지수(Paddick's Conformity Index, PCI)를 구하고, 폐의 30 Gy 용적($V_{30}$), $V_{20}$, $V_{10}$, $V_5$, 평균선량(Mean dose)을 평가하고, 척수의 최대선량 값을 평가하였다. 결 과 : PTV에 대한 CI, HI, PCI의 평균값은 각각 $0.944{\pm}0.009$, $1.106{\pm}0.027$, $1.084{\pm}0.016$으로 평가되었다. 전체 폐에 대한 첫 번째 환자의 $V_{20}$은 3D CRT, IMRT, VMAT 각각 30.7%, 20.2%. 21.2%, 두 번째 환자의 $V_{20}$은 33.0%, 29.2%. 31.5%, 세 번째 환자의 $V_{20}$은 51.3%, 34.3%. 36.9%, 네 번째 환자의 $V_{20}$은 56.9%, 33.7%. 40%로 제한된 각도를 이용한 IMRT 치료계획에서 가장 낮게 평가되었다. 척수에 대한 최대선량 값은 모두 허용선량 미만으로 평가되었다. 결 론 : 비소세포 폐암의 방사선치료계획에서 3D CRT와 비교했을 때, 제한된 각도를 이용한 IMRT나 VAMT을 이용하면 척수의 허용선량을 넘지 않으면서 폐 선량을 줄여줄 수 있는 치료계획을 세울 수 있었다. IMRT와 VAMT을 비교해보면 PTV의 선량포함과 척수선량을 고려했을 때 IMRT 치료계획에서 보다 좁은 각도를 이용한 치료계획이 가능하였고, 이는 폐 선량을 좀 더 줄여줄 수 있는 결과를 얻을 수 있었다.

Keywords

References

  1. Ingrid de Bree, M.Sc., MariIlle G.E. van Hinsberg, et al.: High-dose radiotherapy in inoperable nonsmall cell lung cancer: Comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy: Medical Dosimetry 2012
  2. Viacheslav Soyfer, Yaron Meir, Benjamin W Corn, et a.l: AP-PA field orientation followed by IMRT reduces lung exposure in comparison to conventional 3D conformal and sole IMRT in centrally located lung tumors: Radiation Oncology Journal 2007/1/13
  3. Anna Simeonova, Yasser Abo-Madyan, Mostafa El- Haddad, et al.: Comparison of anisotropic aperture based intensity modulated radiotherapy with 3Dconformal radiotherapy for the treatment of large lung tumors: Radiotherapy and oncology 2012;102:263-273 https://doi.org/10.1016/j.radonc.2011.12.009
  4. Xiaodong Zhang, Yupeng Li,. Xiaoning Pan: Intensitymodulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung caner: Avirtual clinical study: Int. J. Radiation Oncology Biol. Phys., 2010;77:357-366 https://doi.org/10.1016/j.ijrobp.2009.04.028
  5. Florin Rosca, Micheal Kirk, Daniel Soto, et al.: Reducing the low-dose lung radiation for central lung tumors by restricting the IMRT beams and arc arrangement: Medical dosimetry 2012;37:280-286 https://doi.org/10.1016/j.meddos.2011.10.003
  6. Sabin Fromm, Andrea Rotenfusser, Daniel Berger, et al.: 3D-conformal radiotherapy for inoperable non-small-cell lung cancer-A single centre experience: Radiotherapy and Oncology 2007;41:133-143
  7. Mary V. Graham, James A. Purdy, Bahman Emami, et al.: Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer(NSCLA): Int. J. Radiation Oncology Biol. Phys., 1999;45:323-329
  8. Loic Feuvret, Georges Noel et al.: CONFORMITY INDEX: A REVIEW. Int. J. Radiation Oncology Biol. Phys., 2006;64:333-342 https://doi.org/10.1016/j.ijrobp.2005.09.028
  9. Ian Paddick, M. Sc.: A simple scoring ratio index the conformity of radiosurgical treatment plans. technical note: Journal of neurosurgery 2000;93:219-222
  10. Lawrence B. Marks, Ellen D. Yorke, Andrew Jackson, et al.: Use of normal tissue complication probability models in the clinic: Int. J. Radiation Oncology Biol. Phys., 2010;76:510-519
  11. Chang Hoon Song, Hong Ryull Pyo, Sung Ho Moon, et al.: Treatment-related pneumonitis and acute s in nonsmall- cell lung cancer patients treated with chemotherapy and helical tomotherapy: Int. J. Radiation Oncology Biol. Phys., 2010;78:651-658 https://doi.org/10.1016/j.ijrobp.2009.08.068
  12. Samuel D. McGrath, Martha M. Matuszak, Di Yan, Larry L. Kestin, et al.: Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: A dosimetric and treatment efficiency analysis: Radiotherapy and Oncology 2010;95:153-157 https://doi.org/10.1016/j.radonc.2009.12.039
  13. Gray A. Ezzell, Jay W. Burmeister, Nesrin Dogan et al.: IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119: Medical Physics 2009;36:11.
  14. Benjamin E. Nelms, Jeff A. Simon: A survey on planar IMRT QA analysis: Journal of Medical Physics 2007;3:8