DOI QR코드

DOI QR Code

Effect of pMDI as Coupling Agent on The Properties of Microfibrillated Cellulose-reinforced PBS Nanocomposite

pMDI 커플링제가 마이크로피브릴 셀룰로오스 강화 PBS 나노복합재료의 성질에 미치는 영향

  • Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Lee, Seung-Hwan (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
  • 장재혁 (강원대학교 산림환경과학대학) ;
  • 이승환 (강원대학교 산림환경과학대학) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2014.04.30
  • Accepted : 2014.05.27
  • Published : 2014.07.25

Abstract

The effect of microfibrillated cellulose (MFC) content and coupling agent (polymeric methylene diphenyl diisocyanate, pMDI) on the properties of MFC-reinforced polybutylene succinate (PBS) nanocomposite. With increasing MFC content, tensile strength and elastic modulus were increased. More than 1.5 times in tensile strength of PBS/MFC(70/30) nanocomposite was improved by the addition of pMDI (1 phr), compared to the nanocomposite without pMDI. This trend was being significant in nanocomposite with higher MFC content. Thermal stability of the nanocomposite was increased by the addition of pMDI. These improvements is considered to be due to the improvement of MFC dispersion and interfacial adhesion between MFC and PBS matrix.

마이크로피브릴 셀룰로오스(MFC) 강화 polybutylene succinate (PBS) 나노복합재료의 성질에 미치는 MFC 첨가량 및 커플링제로서 polymeric methylene diphenyl diisocyanate (pMDI)의 첨가 영향을 조사하였다. 나노복합재료의 인장강도 및 탄성율은 MFC의 첨가량이 증가함에 따라 향상되었다. 또한 pMDI 첨가에 의하여 인장강도 및 탄성율은 증가하였으며, MFC첨가량이 증가하면서 그 경향이 더욱 뚜렷하였다. PBS/MFC (70/30) 복합재료에서는 인장강도가 pMDI(1 중량부)의 첨가에 의하여 약 1.5배 이상 향상되었다. 이러한 향상은 pMDI 첨가에 의한 MFC의 분산성 및 메트릭스 고분자와의 계면접착성 향상에 기인하며, 전자현미경을 이용한 파단면 관찰로 확인하였다. 또한, pMDI 첨가에 의하여 나노복합재료의 열적 안정성도 향상되었다.

Keywords

References

  1. Calabia, B.P., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., Funabashi, M. 2013. Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers. 5: 128-141. https://doi.org/10.3390/polym5010128
  2. Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Journal of the Korean Wood Science and Technology 38(6): 587-601. https://doi.org/10.5658/WOOD.2010.38.6.587
  3. Eichhorn, S., Dufresne, A., Aranguren, M., Marcovich, N., Capadona, J., Rowan, S., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A., Bismarck, A., Berglund L., Peijs, T. 2010. Review: current international research into cellulose nanofibres and nanocomposites. Journal of Matererials Science. 45: 1-33. https://doi.org/10.1007/s10853-009-3874-0
  4. Fujimaki, T. 1998. Processability and properties of aliphatic polyesters, 'BIONOLLE', synthesized by polycondensation reaction. Polymer Degradation and Stability. 59: 209-214. https://doi.org/10.1016/S0141-3910(97)00220-6
  5. Greenburg, M.M., 1998. Toxicological review of methylene diphenyl diisocyanate (MDI). U.S. Environmental Protection Agency. Washington, DC, USA. p. 2.
  6. Ichikawa, Y., Kondo, H., Igarashi, Y., Noguchi, K., Okuyama. K., Washiyama, J. 2000. Polymer. 41: 4719-4727. https://doi.org/10.1016/S0032-3861(99)00659-X
  7. Imaizumi, M., Kotani, M., Kondo, H., Iwasa, T., Takiyama, E. Polyester sheet. US Patent No. 5314969, 1994.
  8. Imaizumi, M., Kotani, M., Kamei, R., Takiyama, E. Stretched blow molding articles. US Patent No. 5658627, 1997.
  9. Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofiber from domestic plantation resources. Journal of the Korean Wood Science and Technology. 40(3): 156-163. https://doi.org/10.5658/WOOD.2012.40.3.156
  10. Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology. 47: 925-937. https://doi.org/10.1007/s00226-013-0543-x
  11. Kalia, S., Kaith, B.S., Kaur, I. 2010. Cellulose Fibers: Bio- and Nano- Polymer composites -Green chemistry and technology-. Springer-Verlag. Berlin, Heidelberg, Germany. pp. 426-427.
  12. Kim, M.J., Kim, J.H., Park, S.Y. 2011. The dyeability of the heat resistant and biodegradable polyester with the variation of dyeing temperature. Annual Meeting of the Korean Society of Dyers and Finishers. Proceeding. p. 85.
  13. Lavoine, N., Desloges, I., Dufresne, A., Bras, J. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials:A review. Carbohydrate. Polymers. 90: 735-764.
  14. Lee, S.H., Wang, S. 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composite Part A: Applied Science and Manufacturing. 37: 80-91. https://doi.org/10.1016/j.compositesa.2005.04.015
  15. Lee, S.H., Teramoto, Y., Endo, T. 2011. Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Composite Part A:Applied Science and Manufacturing. 42: 151-156. https://doi.org/10.1016/j.compositesa.2010.10.014
  16. Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrils and their applications: High strength nanopapers and polymer composite films. Journal of the Korean Wood Science and Technology. 39(3): 197-205. https://doi.org/10.5658/WOOD.2011.39.3.197
  17. Liu, D., Sun, S., Tian, H., Maiti S., Ma Z. 2013. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose. 20(6): 2981-2989. https://doi.org/10.1007/s10570-013-0073-6
  18. Moteki, Y., Fujiwara, N., Furuichi, Y., Takiyama, E. Polyester laminates. US Patent No. 5360663, 1994.
  19. Nakagaito, A.N., Fujimura, A., Sakai, T., Hama, Y., Yano, H. 2009. Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Composites Science and Technology. 69: 1293-1297. https://doi.org/10.1016/j.compscitech.2009.03.004
  20. Ohkita, T., Lee, S.H. 2005. Bamboo fiber (BF)-filled poly(butylenes succinate) bio-composite -Effect of BF-e-MA on the properties and crystallization kinetics-. Holzforschung. 58(5): 537-543.
  21. Ohkita, T., Lee, S.H. 2006. Thermal degradation and biodegradability of poly(latic acid)/corn starch biocomposites. Journal of Applied Polymer Science. 100: 3009-3017. https://doi.org/10.1002/app.23425
  22. Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindstrom, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 8: 1934-1941. https://doi.org/10.1021/bm061215p
  23. Rozman, H.D., Tan, K.W., Kumar R.N., Abubakar, A. 2001. Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate. Journal of Applied Polymer Science. 81(6): 1333-1340. https://doi.org/10.1002/app.1558
  24. Saito, T., Kimura, S., Nishiyama, Y., Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecule. 8: 2485-2491. https://doi.org/10.1021/bm0703970
  25. Siqueira, G., Bras, J., Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers. 2: 728-765. https://doi.org/10.3390/polym2040728
  26. Taka, T., Yasukawa, Y., Takiyama, E. Polyester film. US Patent No. 5324794, 1994.
  27. Takahasi, T., Kamei, R., Terazono, S., Takahasi, T., Nakamura, A., Takiyama, E., Polyester tying tape-like materials. US Patent No. 5310872, 1994.
  28. Tokiwa, Y., Calabia, B.P. 2007. Biodegradability and biodegradation of polyesters. Journal of Polymers and the Environment. 15: 259-267. https://doi.org/10.1007/s10924-007-0066-3
  29. Wang, H., Sun, X., Seib, P. 2001. Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. Journal of Applied Polymer Science. 82: 1761-1767. https://doi.org/10.1002/app.2018
  30. Wang, X., Zhou, J., Li, L. 2007. Multiple melting behavior of poly (butylene succinate). European Polymer Journal. 43: 3163-3170. https://doi.org/10.1016/j.eurpolymj.2007.05.013
  31. Yasuda, Y., Takiyama, E. Polyester injection-molded articles. US Patent No. 5391644, 1995.
  32. Yoo, E.S., Im, S.S. 1999. Melting Behavior of Poly(butylene succinate) during Heating Scan by DSC. Journal of Polymer Science Part B: Polymer Physics. 37: 1357-1366.

Cited by

  1. Preparation and characterization of polybutylene-succinate/poly(ethylene-glycol)/cellulose nanocrystals ternary composites vol.133, pp.15, 2016, https://doi.org/10.1002/app.43302
  2. Preparation of Lignocellulose Nanofibers from Korean White Pine and Its Application to Polyurethane Nanocomposite vol.42, pp.6, 2014, https://doi.org/10.5658/WOOD.2014.42.6.700