• Title/Summary/Keyword: polymeric MDI

Search Result 13, Processing Time 0.018 seconds

A Study on the Stabilization of Monomeric MDI and Purification of Crude MDI (Crude MDI의 정제 및 Monomeric MDI의 안정화에 관한 연구)

  • Jung, Jong-Won;Kim, Young-Chul;Park, Nam-Cook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.588-596
    • /
    • 1996
  • The optimum conditions of the 1st and 2nd distillation had been investigated to obtaine a high quality monomeric MDI and fire reactive polymeric MDI by purification of crude MDI. Effect of additives on the monomeric MDI's color change, dimerization and the reactivity of polymeric MDI with standard polyol system has been tested. When the monomeric MDI yield is approximately 32%, 4,4'-MDI content is above 98% in the monomeric MDI at the 1st distillation. When the separation ratio of initial portion and residue percentage, reflux ratio are set at respectively, approximately 20wt%, 9wt%, above 2 in order to minimize the content of 2,4'-MDI in monomeric MDI, the freezing point of final distilled monomeric MDI is above $38.4^{\circ}C$. Since the monomeric MDI is inherently unstable in the room condition, monomeric MDI easily changes it's color and conducts self-polymerization reaction. To increase the stability of monomeric MDI, the composition of antioxidant, which is composed of phenolic 1st antioxidant, phosphorus 2nd antioxidant, UV absorbent and Hindered amine light stabilizer are used, and benzoyl chloride as antipolymerization agent test are that APHA color is less than 20, dimer content is remained less than 0.36wt% after 45 days storage of monomeric MDI.

  • PDF

Effect of pMDI as Coupling Agent on The Properties of Microfibrillated Cellulose-reinforced PBS Nanocomposite (pMDI 커플링제가 마이크로피브릴 셀룰로오스 강화 PBS 나노복합재료의 성질에 미치는 영향)

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.483-490
    • /
    • 2014
  • The effect of microfibrillated cellulose (MFC) content and coupling agent (polymeric methylene diphenyl diisocyanate, pMDI) on the properties of MFC-reinforced polybutylene succinate (PBS) nanocomposite. With increasing MFC content, tensile strength and elastic modulus were increased. More than 1.5 times in tensile strength of PBS/MFC(70/30) nanocomposite was improved by the addition of pMDI (1 phr), compared to the nanocomposite without pMDI. This trend was being significant in nanocomposite with higher MFC content. Thermal stability of the nanocomposite was increased by the addition of pMDI. These improvements is considered to be due to the improvement of MFC dispersion and interfacial adhesion between MFC and PBS matrix.

Synthesis of Polyurethane Foam with Soybean Oil (콩기름을 이용한 폴리우레탄 포옴의 합성)

  • Yang, Do Hyeon;Lee, Kwang Young;Shin, Jae Sup
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.731-736
    • /
    • 1999
  • The polyol was synthesized from soybean oil. Soybean oil was epoxized with peracetic acid, and was reacted with methanol in a sulfuric acid catalyst. OH value of synthesized polyol was 186(mg KOH/g). The polyurethane foam was synthesized with silicon type B-8409 as a surfactant, distilled water as a blowing agent, dimethylcyclohexylamine as a catalyst, and polymeric MDI. The density, the compressive strength, the compressive modulus, and the cell structure of the synthesized foam were investigated. The foam was prepared with changing the mole ratio of MDI, and the amount of water, surfactant, and catalyst. As the MDI index was increased, the density and the compressive property of the foam were increased.

  • PDF

Performance of Hybrid Adhesives of Blocked-pMDI/Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood

  • Lubis, Muhammad Adly Rahandi;Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.200-209
    • /
    • 2019
  • To improve the water resistance of melamine-urea-formaldehyde (MUF) resins, different levels of blocked polymeric 4,4 diphenyl methane diisocyanate (B-pMDI) were blended with MUF resins to prepare B-pMDI/MUF hybrid adhesives, and their adhesion performances were evaluated for the surface lamination of fancy veneer on plywood. FT-IR spectra showed that the de-blocked -NCO groups reacted with the -OH of hydroxymethyl groups of the MUF resins to form urethane bonds at 2% B-pMDI/MUF, which was detected before and after their hydrolysis. The mass loss after the hydrolysis consistently decreased as the B-pMDI level increased, indicating an improvement in the water resistance. As the B-pMDI level increased, the activation energy of hybrid adhesives decreased, which improved the reactivity of the hybrid adhesives. Additionally, the water resistance improvement of the hybrid adhesives increased the tensile shear strength of the surface laminated plywood in semi-water proof and water-proof by 23 % and 8 %, respectively, at 2% B-pMDI level. This was likely due to the urethane linkages in the hybrid adhesives. However, the formaldehyde emission from plywood panels bonded with the hybrid adhesives increased in the dry state, indicating incomplete curing of the hybrid adhesives.

Bonding Strength of Ozonized Soybean Oil-based Modified pMDI Adhesive Hardened at High and Medium Temperature (오존산화 콩기름 변성 pMDI 접착제의 고온 및 중온 경화 접착력)

  • Lee, Eung-Su;Kang, Chan-Young;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.541-546
    • /
    • 2010
  • This study was to investigate the dry bond strengths of the plywoods manufactured with 3 hours ozonized soybean oil (SBO)/polymeric methylene diphenyl diisocyanate (pMDI) adhesive at mid and high curing temperature. In results of the dry bonding strengths of the 3 hrs-ozonized SBO mixed with pMDI at high curing temperature were respectively the strengths of weight ratio of 3hrs-ozonized SBO : pMDI, 1 : 0.5, 4.74 kgf/$cm^2$, 1 : 0.75, 7.14 kgf/$cm^2$ 1 : 1, 9.29 kgf/$cm^2$, 1 : 2, 16.53 kgf/$cm^2$, 1 : 3, 17.42 kgf/$cm^2$, and 1 : 4, 16.75 kgf/$cm^2$. Therefore, it was found that the equivalent ratio was formed approximately between 3 hrs-ozonized SBO : pMDI 1 : 2 and 1 : 3. The dry bonding strengths of the 3hrs-ozonized SBO mixed with pMDI at medium curing temperature were respectively the strengths of weight ratio of 3 hrs-ozonized SBO : pMDI, 1 : 0.5, 3.16 kgf/$cm^2$, 1 : 0.75, 6.13 kgf/$cm^2$ 1 : 1, 8.18 kgf/$cm^2$, 1 : 2, 11.82 kgf/$cm^2$. In this experiment the higher bonding strength at high curing temperature was shown approximately between 3 hrs-ozonized SBO : pMDI 1 : 2 and 1 : 3. If this wood adhesive is used at high curing temperature, it is possibile to bond the plywoods.

Effect of pMDI or HDI Content in UMF Resin on Bonding High Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.414-420
    • /
    • 2010
  • The effect of polymeric diphenyl methane-4,4-diisocyanate (pMDI) or 1,6-hexamethylene diisocyanate (HDI) in the UMF resin was discussed for improvement of the dry and wet shear strengths of plywood manufactured from high moisture content veneers. The curing behavior of UMF resin by pMDI or HDI content was examined by DSC and TGA, and its adhesion performance was evaluated by dry and wet shear strength tests of plywood. With the increase of pMDI content in the UMF resin, the curing temperature, reaction enthalpy (${\Delta}H$), and thermal stability consistently increased. With the increase of HDI content in the UMF resin, however, the curing temperature and reaction enthalpy (${\Delta}H$) decreased consistently and the thermal stability slightly increased in the range of 200 to $400^{\circ}C$ but decreased beyond $400^{\circ}C$. Also, the dry tensile shear strength increased up to the pMDI content of 5% and then decreased with its further addition but the wet tensile shear strength showed slight tendency to increase with the increase of pMDI content in the UMF resin. As the HDI content increased, however, the dry and wet tensile shear strengths of plywood consistently increased.

Preparation of Wood Adhesives from the Rice Powder and pMDIs; Characterizations of Their Properties

  • Lee, Sang-Min;Joo, Ji-Hye;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.607-615
    • /
    • 2015
  • To investigate the adhesion effect of various kinds and contents of polymeric methylene diphenyl diisocyanates (pMDIs) on adhesion performance, wood adhesives (A-1~5) were synthesized and characterized. As results, when the amount of pMDI increased in adhesives, the dry tensile strength was found to be proportionally increased sustaining at around $16.0{\sim}21.6kgf/cm^2$. The polyurethane (PU) resin, which used M11S as a source of pMDI showed the best wet tensile strength at $11.9kgf/cm^2$ and cyclic boil tensile strength at $8.1kgf/cm^2$, which satisfied the requirement of over $7kgf/cm^2$. Thermal properties of the rice powder (RP) based polyurethane resins were characterized by differential scanning calorimetry (DSC) and Thermal gravimetric analysis (TGA). Thermal stability of polyurethane resins increased to $250^{\circ}C$ with adding pMDIs. The more pMDI (M5S) was added to adhesive, the higher thermal stability of the resin was observed by TGA.

Chemical Structure of Ozonized Waste Cooking Oil and Wood Bonding Strengths of Reaction Products with pMD (오존 처리한 폐식용유의 화학구조와 pMDI로 제조한 접착제의 목재 접착강도)

  • Kang, Chan-Young;Lee, Eung-Su;Ryu, Jae-Yun;Lee, Hyun-Jong;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.316-322
    • /
    • 2010
  • The research attempted to develop a wood adhesive based on waste cooking oil, using ozonification technology for the chemical structure modification. The waste cooking oil (WCO) was reacted with $O_3$ for different times; 1 h, 2 h, and 3 h. The chemical structure modifications of the ozonized WCOs were examined by Fourier transform Infrared (FT-IR) spectrum. The FT-IR spectrum of WCO had an absorbance peak at 3,010 $cm^{-1}$ that was the characteristic peak of the unsaturated double bonds. As ozone treatment time increased, the peak of the double bond was disappeared and carboxyl peak appeared at 1,700 $cm^{-1}$. Especially, the double bond of 3 hrs-ozonized WCO was vanished almost. In results of the dry bonding strengths of the 3 hrs-ozonized WCO mixed with polymeric methylene diphenyl diisocyanate (pMDI) were the strengths of weight ratio of 3hrs-ozonized WCO : pMDI, 1 : 0.5, 8.08 kgf/$cm^2$, 1 : 0.75, 9.53 kgf/$cm^2$ 1 : 1, 44.16 kgf/$cm^2$, 1 : 2, 58.08 kgf/$cm^2$, 1 : 3, 61.41 kgf/$cm^2$, and 1 : 4, 46.95 kgf/$cm^2$. Therefore, it was found that the optimum equivalent ratio was formed at the ratio of 1 : 2 or 1 : 3. Under wetting the bonding strength of 1 : 3 ratio was appeared higher than that of 1 : 2 ratio, while the results obtained from hot-water and cyclic boiling shear test were similar.

Effects of Chain Extender and Inorganic Filler on the Properties of Semi-Rigid Polyurethane Foams (반경질 폴리우레탄 발포체의 물성에 대한 사슬 연장제와 무기 충전제의 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The physical properties of polymeric foams depend on the density of foams, physical properties of base polymers, the content of open cells, and cell structures including the size and its distribution, the shape of cell, and the thickness of skin layer. The foam density is affected by the chemistry of raw materials, the concentration of crosslinking agent and the blowing agent as well as the operating parameters during production process. In this study, the basic formulations of foams are composed of polyester polyol, MDI, amine catalyst, tin catalyst, silicone surfactant, and water. Cross-linking density of polyurethane was increased by using chain extenders. Also, the mechanical properties of polyurethane foam were improved by using the inorganic fillers (silica 1,2 and talc 1,2) having different $SiO_2$ contents and particle sizes. We investigated the properties of modulus, tensile strength, compressive strength and hardness of foams obtained by changing kind of inorganic filler and chain extender, and observed the distribution of inorganic filler as well as variation of cell size within the foams by electron microscopy.

Effects of Isocyanate Index and Aging on the Physical Properties of Polyurethane Foams (폴리우레탄 발포체의 물성에 대한 이소시아네이트 인덱스와 노화의 영향)

  • Kwon Hyun;Kim Sang-Bum;Kim Youn Cheol
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.457-462
    • /
    • 2005
  • Polyurethane foams (PUFs) were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI), mixed polyol with OH value of 480, silicone surfactant, three catalysts, and hydrofluorocarbon(HFC) as blowing agent. Balance (PC-8), gelling (33LV), and trimerization (TMR-2) catalysts were used. The effect of the catalysts on the physical properties of PUF with increase of isocyanate (NCO) index and aging time was investigated. The cell size of the PUF with PC-8 and 33LV slightly increased with an increase in NCO index from 100 to 170 but compressive strength did not change significantly. In case of trimerization catalyst, the compressive strength of PUF increased from 8.75 to 1$10.5 kg_f/cm^2$ and the cell size decreased with an increase in NCO index. The compressive strength of the PUF with 33LV increased from 9.21 to $10.15 kg_f/cm^2$ with an increase in aging time. However, there was no detectable change in the compressive strength of PUF with TMR-2. A possible interpretation of the results includes an additional cross-link reaction of non-reacted MDI and FTIR spectrum illustrated the change of NCO peak.