DOI QR코드

DOI QR Code

Improvement of Signal Stability by a Cyclone-type Particle Separator for Ceramic Analysis using Laser Ablation ICP-MS

  • Lee, Jin Sook (Department of Chemistry, Dankook University) ;
  • Lim, H.B. (Department of Chemistry, Dankook University)
  • Received : 2014.03.13
  • Accepted : 2014.04.11
  • Published : 2014.08.20

Abstract

Keywords

Experimental

Four ceramic powders with different particle size were prepared. ITO and MgO powders, spotlighted ceramics as a new display material, were prepared by sol-gel method in the size of 50 nm and 1 mm, respectively. The densities of ITO and MgO were measured to be 2.12 and 0.95 g/cm3, respectively. Two alumina powders, AES12 with high purity and AL-41 with low soda, were purchased from Sumitomo (Japan). The physical properties of the ceramic powders were listed in Table 1

Table 1.Physical properties of ceramic powder samples

For laser ablation, the powders were pressed with 1,500 pascal in the diameter of 40 mm using a press (HERZOG PT 40/2D, GmbH Co., Germany). The prepared pellets were ablated and analyzed semi-quantitatively using the laser ablation system (LSX-100, Cetac, Inc., Omaha) equipped with a frequency-quadrupled neodymium-doped yttrium aluminum garnet (Nd:YAG) laser operated under Q-switched mode. The ablated samples were analyzed by ICP-MS (Elan 6000, Perkin-Elmer Sciex, Concord). Typical operating conditions of the laser ablation ICP-MS system were summarized in table 2. The flow rate of Ar and He gas was adjusted to 1.0 L/min and 0.9 L/min, respectively.

Table 2.Instrumental operating conditions of ICP-MS and laser ablation system

References

  1. Becker, J. S. Spectrochim. Acta Part B 2002, 57, 1805. https://doi.org/10.1016/S0584-8547(02)00213-6
  2. Zhou, H.; Wang, Z.; Zhu, Y.; Li, Q.; Zou, H.-J.; Qu, H.-Y.; Chen, Y.-R.; Du, Y.-P. Spectrochim. Acta Part B 2013, 90, 55. https://doi.org/10.1016/j.sab.2013.10.003
  3. Gunther, D.; Hattendorf, B. Trends in Anal. Chem. 2005, 24, 255. https://doi.org/10.1016/j.trac.2004.11.017
  4. Bleiner, D.; Lienemann, P.; Vonmont, H. Talanta 2005, 65, 1286. https://doi.org/10.1016/j.talanta.2004.09.004
  5. Davide, B.; Peter, L.; Heinz, V. Talanta 2005, 65, 1286. https://doi.org/10.1016/j.talanta.2004.09.004
  6. Guillong, M.; Kuhn, H. R.; Gunther, D. Spectrochim. Acta Part B 2003, 58, 221. https://doi.org/10.1016/S0584-8547(02)00258-6
  7. Weis, P.; Beck, H. P.; Gunther, D. Anal. Bioanal. Chem. 2005, 381, 212. https://doi.org/10.1007/s00216-004-2947-9
  8. Kuhn, H. R.; Gunther, D. Anal. Chem. 2003, 75, 747. https://doi.org/10.1021/ac0259919
  9. Koch, J.; Bohlen, A.; Hergenroder, R.; Niemax, K. J. Anal. At. Spectrom. 2004, 19, 267. https://doi.org/10.1039/b310512a
  10. Perkins, W. T.; Pearce, N. J. G.; Jeffries, T. E. Geochim. Cosmochim. Acta 1993, 57, 475. https://doi.org/10.1016/0016-7037(93)90447-5
  11. Gonzalez, J.; Mao, X. L.; Roy, J.; Mao, S. S.; Russo, R. E. J. Anal. At. Spectrom. 2002, 17, 1108. https://doi.org/10.1039/b202122f
  12. Wang, Z.; Hattendorf, B.; Gunther, D. J. Anal. At. Spectrom. 2006, 21, 1143. https://doi.org/10.1039/b607469n
  13. Baker, S. A.; Dellavecchia, M. J.; Smith, B. W.; Winefordner, J. D. Anal. Chim. Acta 1997, 355, 113. https://doi.org/10.1016/S0003-2670(97)00449-2
  14. Bleiner, D.; Lienermann, P.; Vonmont, H. Talanta 2005, 65, 1286. https://doi.org/10.1016/j.talanta.2004.09.004