Graphene Oxide-decorated PLGA/Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds

  • Lee, Eun Ji (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Lee, Jong Ho (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Shin, Yong Cheol (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Hwang, Dong-Gook (Department of Applied Nanoscience, College of Nanoscience & Nanotechnology, Pusan National University) ;
  • Kim, Jin Soo (Department of Applied Nanoscience, College of Nanoscience & Nanotechnology, Pusan National University) ;
  • Jin, Oh Seong (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Jin, Linhua (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Hong, Suck Won (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Han, Dong-Wook (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 투고 : 2013.08.20
  • 심사 : 2013.10.15
  • 발행 : 2014.03.01

초록

In this study, novel graphene oxide (GO)-decorated hybrid fiber sheets composed of poly(lactic-co-glycolic acid, PLGA) and collagen (Col) (GO-PLGA/Col) for application to tissue engineering scaffolds were prepared via dual electrospinning. Physicochemical properties of GO-PLGA/Col fiber sheets were characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman spectroscopy, thermogravimetric analysis (TGA) and contact angle measurement. FESEM and AFM images showed that GO-PLGA/Col fiber sheets had a three-dimensional interconnected pore structure with an average fiber diameter of about 480 nm. FTIR and Raman spectra revealed that GO was uniformly distributed in the fiber structure of PLGA or PLGA/Col sheets. TGA profiles demonstrated that GO-PLGA/Col hybrid fiber sheets were thermally stable in spite of adding GO. GO slightly affected the contact angle of PLGA sheets, while Col significantly increased their hydrophilicity. Initial attachment of human dermal fibroblasts (HDFs) on GO-PLGA and GO-PLGA/Col fiber sheets was significantly superior to that on PLGA sheets, and their proliferation was gradually increased during the culture period. These results suggest that GO-PLGA/Col hybrid fiber sheets can be effectively used as scaffolds supporting tissue regeneration.

키워드

참고문헌

  1. K. G. Harding, H. L. Morris, and G. K. Patel, "Sience, medicine, and the future: healing chronic wounds," BMJ, 324, 160 (2002). https://doi.org/10.1136/bmj.324.7330.160
  2. B. S. Kim and D. J. Mooney, "Development of biocompatible synthetic extracellular matirces for tissue engineering," Trends Biotechnol, 16, 224 (1998). https://doi.org/10.1016/S0167-7799(98)01191-3
  3. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, "Electrospun nanofibrous structure: a novel scaffold for tissue engineering," J. Biomed. Mater. Res., 60, 613 (2002). https://doi.org/10.1002/jbm.10167
  4. J. P. Chen, G. Y. Chang, and J. K. Chen, "Electrospun collagen/chitosan nanofibrous membranes as wound dressing," Colloid. Surface. A, 313, 183 (2008).
  5. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, S. Ramakrishna, and C. T. Lim, "Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution," Acta Biomater., 3, 321 (2007). https://doi.org/10.1016/j.actbio.2007.01.002
  6. W. Tan, J. Twomey, D. Guo, K. Madhavan, and M. Li, "Evaluation of nanostrucutural, mechanical, and biological properties of collagen-nanotube composites," IEEE Trans. Nanobioscience, 9, 121 (2010). https://doi.org/10.1109/TNB.2010.2043444
  7. I. Foltran, E. Foresti, B. Parma, P. Sabatino, and N. Roveri, "Novel biologically inspired collagen nanofibers reconstituted by electrospinning method," Macromol. Symp., 269, 111 (2008).
  8. R. L. Fischer, M. G. McCoy, and S. A. Grant, "Electrospinning collagen and hyaluronic acid nanofiber meshes," J. Mater. Sci. Mater. Med., 23, 1645 (2012). https://doi.org/10.1007/s10856-012-4641-3
  9. M. V. Jose, V. Thomas, D. R. Dean, and E. Nyairo, "Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds," Polymer, 50, 3778 (2009). https://doi.org/10.1016/j.polymer.2009.05.035
  10. S. H. Yun, C. J. Kim, O. K. Kwon, W. I. Kim, and O. H. Kwon, "Fabrication and characterization of biodegradable nanofiber containing Insulin,"" Tissue Eng. Regen. Med., 9, 33 (2012).
  11. L. Wu, H. Li, S. Li, X. Li, X. Yuan, X. Li, and Y. Zhang, "Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning," J. Biomed. Mater. Res. A, 92, 563 (2010).
  12. H. K. Makadia and S. J. Siegel, "Poly lactic-co-glicolic acid (PLGA) as biodegradable controlled drug delivery carrier," Polymers, 3, 1377 (2011). https://doi.org/10.3390/polym3031377
  13. H. -L. Kim, J. -H. Lee, M. H. Lee, B. J. Kwon, and J. -C. Park, "Evaluation of electrospun (1,3)-(1,6)-$\beta$-D-glucans/biodegradable polymer as artificial skin for full-thickness wound healing," Tissue Eng. Part A, 18, 2315 (2012). https://doi.org/10.1089/ten.tea.2011.0686
  14. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J.- Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  15. E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, "High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface," Proc. Natl. Acad. Sci. USA, 104, 9209 (2007). https://doi.org/10.1073/pnas.0703337104
  16. D. R. Dreyer, S. J. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/b917103g
  17. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R.S. Ruoff, "Graphene and graphene oxide: synthesis, properites, and applications," Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  18. C. Chung, Y. -K. Kim, D. Shin, S. -R. Ryoo, B. H. Hong, and D. -H. Min, "Biomedical application of graphene and graphene oxide," Acc. Chem. Res., 46, 2211 (2013). https://doi.org/10.1021/ar300159f
  19. B. Lu, T. Li, H. Zhao, X. Li, C. Gao, S. Zhang, and E. Xie, "Graphene-based composite materials beneficial to wound healing," Nanoscale , 4, 2978 (2012). https://doi.org/10.1039/c2nr11958g
  20. S. K. Lee, H. Kim, and B. S. Shim, "Graphene: an emerging material for biological tissue engineering," Carbon Lett., 14, 63 (2013). https://doi.org/10.5714/CL.2013.14.2.063
  21. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai., "Nano-graphene oxide for cellular imaging and drug delivery," Nano Res., 3, 203 (2008).
  22. C. Wang, Y. Li, G. Ding, X. Xie, and M. Jiang, "Preparation and characterization of graphene oxide/poly(vinyl alcohol) composite nanofibers via electrospinning," J. Appl. Polym. Sci., 127, 3026 (2013). https://doi.org/10.1002/app.37656
  23. W. S. Hummers and R. . Offeman, "Preparation of graphitic oxide," J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  24. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Nvoselov, "Graphene-based liquid crystal device," Nano Lett., 8, 1704 (2008). https://doi.org/10.1021/nl080649i
  25. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nat. Nanotechnol, 3, 563 (2008). https://doi.org/10.1038/nnano.2008.215
  26. A. Sionkowska, M. Wisniewski, J. Skopinska, C. J. Kennedy, and T. J. Wess, "Molecular interactions in collagen and chitosan blends," Biomaterials, 25, 795 (2004). https://doi.org/10.1016/S0142-9612(03)00595-7
  27. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. Car., "Raman spectra of graphite oxide and functionalized graphene sheets," Nano Lett., 8, 36 (2008). https://doi.org/10.1021/nl071822y
  28. L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, "Quantifying defects in graphene via Raman spectroscopy at different excitation energies," Nano Lett., 11, 3190 (2011). https://doi.org/10.1021/nl201432g
  29. C. Thomsen and S. Reich, "Graphite oxide under high pressure: a Raman spectroscopic study," Phys. Rev. Lett., 85, 5214 (2000). https://doi.org/10.1103/PhysRevLett.85.5214
  30. E. Vey, C. Rodger, J. Booth, M. Claybourn, A. F. Miller, and A. Saiani., "Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies," Polym. Degrad. Stabil., 96, 1882 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.07.011
  31. A. D. Li, Z. Z. Sun, M. Zhou, X. X. Xu, J. Y. Ma, W. Zheng, H. M. Zhou, L. Li, and Y. F. Zheng, "Electrospun chitosan-graft-PLGA nanofibers with significantly enhanced hydrophilicity and improved mechanical property," Colloids Surf. B Biointerfaces, 102, 674 (2013). https://doi.org/10.1016/j.colsurfb.2012.09.035
  32. Q. Wei, J. Lu, H. Ai, and B. Jiang, "Novel method for the fabrication of multiscale structure collagen/hydroxyapatite-microsphere composties based on $CaCO_3$ micoparticle templates," Mater. Lett., 80, 91 (2012). https://doi.org/10.1016/j.matlet.2012.04.069
  33. M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt., "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites," J. Mater. Chem., 19, 7098 (2009). https://doi.org/10.1039/b908220d
  34. N. J. Hallab, K. J. Bundy, K. O'Connor, R. L. Moses, and J. J. Jacobs, "Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion," Tissue Eng., 7, 55 (2011).
  35. K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, and D. Cui., "Biocompatibility of graphene oxide," Nanoscale Res. Lett., 6, 1 (2011).
  36. P. P. Zuo, H. F. Feng, Z. Z. Xu, L. F. Zhang, Y. L. Zhang, W. Xia, and W. Q. Zhang, "Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films," Chem. Cent. J., 7, 39 (2013). https://doi.org/10.1186/1752-153X-7-39
  37. K. H. Liao, Y. S. Lin, C. W. Macosko, and C. L Haynes, "Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts," ACS Appl. Mater. Interfaces, 3, 2607 (2011). https://doi.org/10.1021/am200428v
  38. A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J. W. Seo, M. Celio, S. Catsicas, B. Schwaller, and L. Forro, "Cellualar toxicity of carbon-based nanomaterials," Nano Lett., 6, 1121 (2006). https://doi.org/10.1021/nl060162e
  39. Y. Arima and H. Iwata, "Effect of wettability and surface functional groups on protein adsorption and cell adhesion using welldefined mixed self-assembled monolayers," Biomaterials, 28, 3074 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.013
  40. T. R. Nayak, H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, P. -L. R. Ee, J. -H. Ahn, B. H. Hong, G. Pastorin, and B. Ozyilmaz, "Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells," ACS Nano, 5, 4670 (2011). https://doi.org/10.1021/nn200500h
  41. W. C. Lee, C. H. Y. X. Lim, H. Shi, L. A. L. Tang, Y. Wang, C. T. Lim, and K. P. Loh, "Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide," ACS Nano, 5, 7334 (2011). https://doi.org/10.1021/nn202190c
  42. S. Y. Park, J. S. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, and S. H. Hong, "Enhanced differentiation of human neural stem cells into neurons on grapheme," Adv. Mater., 23, H263 (2011). https://doi.org/10.1002/adma.201101503
  43. G. Y. Chen, D. W.P . Pang, S. M. Hwang, H. Y. Tuan, and Y. C. Hu, "A graphene-based platform for induced pluripotent stem cells culture and differentiation," Biomaterials, 33, 418 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.071
  44. E. Schnell, K. Kinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, and J. Mey, "Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-${\varepsilon}$-caprolactone and a collagen/poly-${\varepsilon}$ -caprolactone blend," Biomaterials, 28, 3012 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.009