DOI QR코드

DOI QR Code

간선도로 트램 전용차로에서 트램과 일반차량을 위한 신호최적화 모형 개발

A Development of the Traffic Signal Progression Model for Tram and Vehicles

  • 이인규 (서울시립대학교 교통공학과) ;
  • 김영찬 (서울시립대학교 교통공학과)
  • Lee, In-Kyu (Department of Transportation Engineering, University of Seoul) ;
  • Kim, Youngchan (Department of Transportation Engineering, University of Seoul)
  • 투고 : 2014.03.29
  • 심사 : 2014.05.16
  • 발행 : 2014.06.30

초록

최근에 친환경 신교통수단으로서 주목받고 있는 트램은 철도교통 중 도시부 도로교통을 대체할 수 있는 대중교통 수단으로 인식되어 북미지역과 유럽 등의 주요 선진국에서 주요 교통수단으로 운영되고 있고, 우리나라에서도 도심의 혼잡증가와 대중교통 수송분담율 감소, 교통분야의 환경에 대한 관심으로 트램의 도입이 추진되고 있다. 본 연구는 간선도로의 트램 전용차로 구간에서 트램과 일반차량의 효과적인 운영을 위해 트램의 우선 통행권을 확보하면서 일반차량의 지체를 최소화하는 신호 최적화 모형을 개발하였다. 간선도로의 신호 연동화 모형인 KS-SIGNAL 모형을 기초로 트램의 통행특성과 트램 전용차로 시스템의 특성을 반영한 KS-SIGNAL Tram 모형을 개발하였고, 이 신호 최적화 모형을 통해 트램차량의 최소 연동폭을 확보하여 고정식 기반의 트램 우선신호를 구현하였으며, 이와 동시에 일반 이동류의 신호교차로 대기시간을 최소화하는 신호시간을 산출하였다. 미시적 시뮬레이션 프로그램을 통해 KS-SIGNAL Tram 모형의 신호제어 효과를 분석한 결과, 새로운 모형으로 산출한 교차로 신호시간을 적용했을 때 트램차량의 신호교차로 정지수와 통행시간이 감소했음을 확인하였고, 일반차량도 트램 우선신호에 따른 지체증가가 거의 나타나지 않음을 확인하였다.

A tram has been the focus of a new public transportation that can solve a traffic jam, decreasing of public transit usage and environmental problem in recent years. This study aims to develop a signal optimization model for considering the traffic signal progression of tram and vehicles, when they are operated simultaneously in the same signalized intersections. This research developed the KS-SIGNAL-Tram model to obtain a minimum tram bandwidth and to minimize a vehicle's delay to perform a tram passive signal priority, it is based on the KS-SIGNAL model and is added to the properties of a tram and it's system. We conducted a micro simulation test to evaluate the KS-SIGNAL-Tram model, it showed that the developed optimization model is effective to prevent a tram's stop on intersection, to reduce a tram's travel time and vehicle's delay.

키워드

참고문헌

  1. Abebe Y., Conte R., Gordon S., Mustafa K. (1996), Planning Methods for Integrating LRT Operations into an Urban Street Traffic Control System, Presented at 66th ITE Annual Meeting, Institute of Transportation Engineers, Washington D.C.
  2. Ahn J. H. (2012), A Study for Implementing Innovative Urban Surface Transport Systems in Korea: Focusing on Tramways, KOTI, 5-21.
  3. Bergeron (2008), Le Retour du Tramway en France, Revue Generale des Cheins de Fer, March 2008, 15-19.
  4. Dion F., Ghanim M. (2007), Impact of Dwell Time Variability on Transit Signal Priority Performance at Intersection with Nearside Bus Stop, TRB 2007 Annual Meeting.
  5. Dreher F., Ahuja S., Vuren T. v., Smith J. (2007), Innovative Modelling and Design of Integrated Light Rail Transit Priority Systems Case Study LRT Nottingham, Mott MacDonald, Birmingham, United Kingdom.
  6. Gartner N. H., Stamatiadis C. (2004), Progression Optimization Featuring Arterial-and Route-based Priority Signal Networks, Journal of Intelligent Transportation Systems, 8, 77-86. https://doi.org/10.1080/15472450490437771
  7. Han Y. H., Kim Y. C. (2009), Bus Signal Timing Optimization for Bus Progression with PASSER V and TRANSYT-7F, The 61th Conference of Korean Society of Transportation, Korean Society of Transportation, 761-765.
  8. Jeoung Y. J. (2011), Traffic Signal Control Strategy for Tram Priority in Arterial, University of Seoul, 75.
  9. Ku B. H. (2008), The Needs and Main contents of Sustainable Transportation Distribution Development Law, Monthly KOTI Magazine on Transport, KOTI, 123, 14-21.
  10. Li M., Wu G., Johnston S., Zhang W.-B. (2009), Analysis Toward Mitigation of Congestion and Conflicts at Light Rail Grade Crossings and Intersections, California PATH Research Report UCB-ITS-PRR-2009-9, 43.
  11. Li M., Wu G., Li Y., Bu F., Zhang W.-B. (2007), Active Signal Priority for Light-Rail Transit at Grade-Crossings, Transportation Research Record 2035, Transport Research Board, National Research Council, Washington D.C., 141-149.
  12. Li Y., Koonce P., Li M., Zhou K., Li Y., Beaird S. et al. (2008), Transit Signal Priority Research Tools, Report to Federal Transit Administration, FTA-CA- 26-7049-2008, University of California, Berkeley.
  13. Messer C. J., Whitson R. N., Dudek C. L., Romano E. J. (1973), A Variable-sequence Multiphase Progression Optimization Program, Highway Research Record, 24-33.
  14. Shin E. K., Kim Y. C. (1999), Signal Optimization Model Considering Traffic Flows in General Traffic Network, J. Korean Soc. Transp., 17(2), Korean Society of Transportation, 127-135.
  15. Skabardonis A. (2000), Control Strategies for Transit Priority, Transportation Research Record 1727, Transport Research Board, National Research Council, Washington, D.C., 20-26.
  16. Sunkari S. R., Beasley P. S., Urbanik T. II, Fambro D. B. (1995), Model to Evaluate the Impacts of Bus Priority on Signalized Intersections, Transportation Research Record 1494, Transport Research Board, National Research Council, Washington D.C., 117-123.