DOI QR코드

DOI QR Code

Design and Experiment of Coil gun to Apply Electomagnetic Launcher System

전자기 발사장치에 적용 가능한 코일건 설계 및 실험

  • Lee, Su Jeong (Division of Mechanical Engineering, Yeungnam University) ;
  • Kim, Jin Ho (Division of Mechanical Engineering, Yeungnam University)
  • Received : 2014.02.10
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

This paper reports the design and experiments for a high drive force of projectile in a coil gun system. Currently, the coil gun has been studied to apply an electromagnetic launcher. A coil gun launches a projectile by the attractive magnetic force of the electromagnetic coil. The drive force of projectile is proportional to the magnetic force generated by the electromagnetic coil. The current affects the life of the coil and the current limit exists. Therefore, the coil gun design, which does not exceed the current limit and the magnetic forces are at the maximum, is required. For this purpose, this study calculated the magnetic flux density and forces of the coil gun system and determined the current limit of the coil using the Onderdonk's equation. Based on the design result, a prototype was manufactured and an experiment was conducted to measure the muzzle velocity of the projectile. The fired projectile was analyzed using a CCD camera, and the muzzle velocity was 21m/s. In addition, a comparison of the experimental value and analysis value using commercial electromagnetic analysis software MAXWELL revealed an error of approximately 9.5%.

본 논문은 전자기 발사체에서 피투사체의 높은 발사력을 위한 코일건 설계 및 실험을 다루고 있다. 현재 코일건은 전자기 발사체에 적용하기 위해 많은 연구가 진행되고 있다. 코일건은 솔레노이드 형태의 코일에 전류 인가 시, 플레밍의 오른손 법칙에 의하여 발생하는 전자기력에 의해 피투사체를 추진시키는 원리이다. 피투사체의 발사력은 코일에 흐르는 전류가 생성하는 자기력과 비례한다. 전류는 코일의 수명에 영향을 미치므로 전류의 한계점이 존재한다. 따라서, 전류의 한계점을 초과하지 않고 피투사체가 받는 자기력이 최대가 되는 코일건의 설계가 요구된다. 이를 위해 먼저 코일건의 자속밀도, 자기력을 계산하고, Onderdonk's 식을 이용하여 코일의 전류 한계점을 찾는다. 솔레노이드를 설계하기 위해서 전류 한계점을 초과하지 않는 조건을 만족하며 코일건의 자기력을 최대로 가지는 권수를 알아낸다. 설계 결과에 따라 시제품을 제작하여 피투사체의 속도를 측정하기 위한 실험을 하였다. 발사된 피투사체는 CCD 카메라를 이용하여 촬영 및 분석하였으며, 평균속도 21m/s임을 알 수 있었다. 또한, 상용 전자기 해석 소프트웨어 MAXWELL을 이용한 자속 밀도 해석값와 실험값을 비교한 결과, 오차는 약 9.5%이었다.

Keywords

References

  1. Sung Joong Joo, Jae Man Han, Ji Ung Jo, Man Sung Lee, Dong Suk Park, Je Uk Park, Jong Hyuk Byun, Dong Sok Kim and Gwan Soo Park, "Development of the small electro -magnetic launcher using solenoid coil", 2006 KIEE EMECS Conference, pp. 402-404, Pusan National University, Korea (2006)
  2. H. D. Fair, "Advances in Electromagnetic Launch Science and Technology and Its Applications", IEEE Transactions on Magnetics, Vol.45, No.1, pp. 225-230 (2009) DOI: http://dx.doi.org/10.1109/TMAG.2008.2008612
  3. De-man Wang, Qun She, Yin-ming Zhu, Jian-jun Chen, "The Magnetic Levitation of the Projectile in Coil guns", IEEE Transactions on Magnetics, Vol.33, No.1, pp. 195-200 (1997) DOI: http://dx.doi.org/10.1109/20.559945
  4. Giancarlo Becherini and Bernardo Tellini, "Helicoidal Electromagnetic Field for Coilgun Armature Stabilization", IEEE Transactions on Magnetics, Vol.39, No.1, pp. 108-111 (2003) DOI: http://dx.doi.org/10.1109/TMAG.2002.805878
  5. Giancarlo Becherini, "Gyroscopic Stabilization of Launch Package in Induction Type Coil gun", IEEE Transactions on Magnetics, Vol.37, No.1, pp. 116-122 (2001) DOI: http://dx.doi.org/10.1109/20.911803
  6. Lizhong Xu and Yanbo Geng, "Forces of rails for electromagnetic railguns", Applied Mathematical Modeling, Vol. 36, pp.1465-1476 (2012) DOI: http://dx.doi.org/10.1016/j.apm.2011.09.036
  7. Eric Dennison, "On-Axis Field of a Finite, Straight, Thin Shell Solenoid", Magnet Formulas web site, 2005, "http://www.netdenizen.com/emagnet/index.htm"
  8. Jae Man Han, Sung Joong Joo, Ji Ung Jo, Man Sung Lee, Dong Suk Park, Je Uk Park, Jong Hyuk Byun, Dong Sok Kim and Gwan Soo Park,, "Research of the driving characteristic in the electromagnetic launcher by switching circuit", 2006 KIEE EMECS Conference, pp. 595-596, Pusan National University, Korea (2006)

Cited by

  1. The Launch Performance Analysis of the Electromagnetic Coil Launcher Continuous Launch Process With Multiple Armature vol.45, pp.7, 2017, https://doi.org/10.1109/TPS.2017.2706060