초록
최근 급격한 인터넷의 발전으로 효율적인 네트워크관리를 위해 응용 트래픽 데이터 분석의 중요성이 강조되고 있다. 네트워크 관리를 위해 관리자는 트래픽 데이터를 각각 어떠한 응용에서 발생 하였는지 탐지할 수 있어야 한다. 응용을 탐지하기 위한 방법들 중 하나인 통계정보 트래픽 분류방법을 사용하여 트래픽을 분류할 수 있지만, 이러한 통계정보를 그대로 사용하여 분류하기에는 트래픽 수집지점에서 발생하는 패킷 역전, 재전송에 의한 패킷 중복과 같은 문제점들이 있다. 본 논문에서는 응용에서 발생된 트래픽의 탐지 및 분석률 향상을 위해 패킷 역전 문제와 재전송에 의한 패킷 중복 문제를 탐지하고 개선하는 방법론을 제안하였다. 이렇게 제안한 개선 방법론을 실제 트래픽 분석 시스템에 적용시킴으로써 응용별 바이트 기준 최대 4%의 탐지 및 분석률 향상을 보였다. 이는 제안한 방법론이 실제 트래픽 망에 부담을 줄 수 있는 heavy 플로우의 분석에 기여함을 확인하였다.
With the rapid growth of Internet, the importance of application traffic analysis is increasing for efficient network management. The statistical information in traffic flows can be efficiently utilized for application traffic identification. However, the packet out-of-order and retransmission occurred at the traffic collection point reduces the performance of the statistics-based traffic analysis. In this paper, we propose a novel method to detect and resolve the packet out-of-order and retransmission problem in order to improve completeness and accuracy of the traffic identification. To prove the feasibility of the proposed method, we applied our method to a real traffic analysis system using statistical flow information, and compared the performance of the system with the selected 9 popular applications. The experiment showed maximum 4% of completeness growth in traffic bytes, which shows that the proposed method contributes to the analysis of heavy flow.