DOI QR코드

DOI QR Code

트래픽 수집지점에서 발생하는 TCP패킷중복 및 역전문제 해결 방법

A Method to Resolve TCP Packet Out-of-order and Retransmission Problem at the Traffic Collection Point

  • Lee, Su-Kang (Korea University Department of Computer and Information Science) ;
  • An, Hyun-Min (Korea University Department of Computer and Information Science) ;
  • Kim, Myung-Sup (Korea University Department of Computer and Information Science)
  • 투고 : 2014.03.28
  • 심사 : 2014.05.27
  • 발행 : 2014.06.30

초록

최근 급격한 인터넷의 발전으로 효율적인 네트워크관리를 위해 응용 트래픽 데이터 분석의 중요성이 강조되고 있다. 네트워크 관리를 위해 관리자는 트래픽 데이터를 각각 어떠한 응용에서 발생 하였는지 탐지할 수 있어야 한다. 응용을 탐지하기 위한 방법들 중 하나인 통계정보 트래픽 분류방법을 사용하여 트래픽을 분류할 수 있지만, 이러한 통계정보를 그대로 사용하여 분류하기에는 트래픽 수집지점에서 발생하는 패킷 역전, 재전송에 의한 패킷 중복과 같은 문제점들이 있다. 본 논문에서는 응용에서 발생된 트래픽의 탐지 및 분석률 향상을 위해 패킷 역전 문제와 재전송에 의한 패킷 중복 문제를 탐지하고 개선하는 방법론을 제안하였다. 이렇게 제안한 개선 방법론을 실제 트래픽 분석 시스템에 적용시킴으로써 응용별 바이트 기준 최대 4%의 탐지 및 분석률 향상을 보였다. 이는 제안한 방법론이 실제 트래픽 망에 부담을 줄 수 있는 heavy 플로우의 분석에 기여함을 확인하였다.

With the rapid growth of Internet, the importance of application traffic analysis is increasing for efficient network management. The statistical information in traffic flows can be efficiently utilized for application traffic identification. However, the packet out-of-order and retransmission occurred at the traffic collection point reduces the performance of the statistics-based traffic analysis. In this paper, we propose a novel method to detect and resolve the packet out-of-order and retransmission problem in order to improve completeness and accuracy of the traffic identification. To prove the feasibility of the proposed method, we applied our method to a real traffic analysis system using statistical flow information, and compared the performance of the system with the selected 9 popular applications. The experiment showed maximum 4% of completeness growth in traffic bytes, which shows that the proposed method contributes to the analysis of heavy flow.

키워드

참고문헌

  1. L. Bernaille, R. Teixeira, and K. Salamatian, "Early application identification," in Proc. CoNext 2006. Conf. Future Netw. Technol., 2006.
  2. Y.-T Han and H.-S. Park, "Game traffic classification using statistical characteristics at the transport layer," ETRI J., vol. 32, no. 1, pp. 22-32, Feb. 2010. https://doi.org/10.4218/etrij.10.0109.0236
  3. Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z. L. Zhang, "A modular machine learning system for flow-level traffic classification in large networks," ACM Trans. Knowledge Discovery from Data, vol. 6, pp. 1-34, 2012.
  4. J. Tan, X. Chen, and M. Du, "An internet traffic identification approach based on GA and PSO-SVM," J. Computers, vol. 7, pp. 19-29, 2012.
  5. R. Yuan, Z. Li, X. Guan, and L. Xu, "An SVM-based machine learning method for accurate internet traffic classification," Inf. Syst. Frontiers, vol. 12, pp. 149-156, Apr. 2010. https://doi.org/10.1007/s10796-008-9131-2
  6. S. Runyuan, Y. Bo, P. Lizhi, C. Yuehui, Z. Lei, and J. Shan, "Traffic classification using probabilistic neural networks," in Proc. ICNC, vol. 4, pp. 1914-1919, Yantai, Shandong, Aug. 2010.
  7. L. Bernaille, R. Teixeira, and K. Salamatian, "Early application identification," in Proc. ACM CoNEXT, Lisboa, Portugal, 2006.
  8. T. Bujlow, T. Riaz, and J. M. Pedersen, "A method for classification of network traffic based on C5.0 Machine Learning Algorithm," in Proc. ICNC, pp. 237-241, Maui, HI, Feb. 2012.
  9. C. Yin, S. Li, and Q. Li, "Network traffic classification via HMM under the guidance of syntactic structure," J. Comput. Netw., vol. 56, pp. 1814-1825, Apr. 2012. https://doi.org/10.1016/j.comnet.2012.01.021
  10. H. M. An, J. H. Choi, J. H. Ham, and M. S. Kim. "A method to resolve the limit of traffic classification caused by abnormal TCP session," KNOM Rev., vol. 15, no. 1, pp. 31-39, Dec. 2012.
  11. J. W. Park and M. S. Kim "Performance improvement of the statistic signature based traffic identification system," J. KIPS, vol. 18-C, no. 4, Aug. 2011. https://doi.org/10.3745/KIPSTC.2011.18C.4.243
  12. B. C. Park, Y. J. Won, M.-S. Kim, and J. W. Hong, "Towards automated application signature generation for traffic identification," in Proc. IEEE Network Operations and Management Symp. (NOMS), pp. 160-167, Salvador, Bahia, Apr. 2008.
  13. F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and K. C. Claffy, "GT: Picking up the truth from the ground for internet traffic," ACM SIGCOMM Computer Commun. Rev., vol. 39, pp. 12-18, 2009. https://doi.org/10.1145/1629607.1629610