• Title/Summary/Keyword: retransmission

Search Result 389, Processing Time 0.029 seconds

Modeling of a controlled retransmission scheme for loss recovery in optical burst switching networks

  • Duong, Phuoc Dat;Nguyen, Hong Quoc;Dang, Thanh Chuong;Vo, Viet Minh Nhat
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.274-285
    • /
    • 2022
  • Retransmission in optical burst switching networks is a solution to recover data loss by retransmitting the dropped burst. The ingress node temporarily stores a copy of the complete burst and sends it each time it receives a retransmission request from the core node. Some retransmission schemes have been suggested, but uncontrolled retransmission often increases the network load, consumes more bandwidth, and consequently, increases the probability of contention. Controlled retransmission is therefore essential. This paper proposes a new controlled retransmission scheme for loss recovery, where the available bandwidth of wavelength channels and the burst lifetime are referred to as network conditions to determine whether to transmit a dropped burst. A retrial queue-based analysis model is also constructed to validate the proposed retransmission scheme. The simulation and analysis results show that the controlled retransmission scheme is more efficient than the previously suggested schemes regarding byte loss probability, successful retransmission rate, and network throughput.

Throughput and Delay Performance with a Cooperative Retransmission Scheme Using Distributed Beamforming

  • Kim, Hae-Soo
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.306-312
    • /
    • 2011
  • In this paper, an efficient retransmission scheme using cooperation from neighboring nodes is investigated. In the cooperative retransmission scheme, an erroneous packet is retransmitted to the destination by cooperative nodes where distributed beamforming is used to accommodate multiple cooperating nodes. A Markov model is used to analyze throughput efficiency and average delay of the proposed retransmission scheme. It is shown that the analytical results are well matched with the simulated results and improved throughput and delay performance can be achieved as compared to the traditional retransmission scheme. The performance of the proposed cooperative retransmission is investigated in the multi-hop configuration via computer simulation. The transmit power for retransmission packet is also investigated and it can be significantly reduced by using a small feedback channel.

A Technique to Exploit Cooperation for Packet Retransmission in Wireless Ad Hoc Networks

  • Kim, Hae-Soo;Buehrer, R. Michael
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • In wireless data communication systems, retransmission of an erroneous packet is inevitable due to the harsh communication environment. In this paper, an efficient retransmission scheme using cooperation from neighboring nodes is investigated. In the cooperative retransmission scheme, an erroneous packet is transmitted to the destination by cooperative nodes which have favorable channels. This cooperative retransmission scheme requires no a priori information of neighboring nodes and has no limitation on the number of cooperating nodes. Distributed beamforming is used to accommodate multiple cooperating nodes. Phase and frequency offsets of cooperating signals are extracted from the NACK message and used to co-phase retransmitted data packets. The outage probability of the cooperative retransmission scheme is analyzed for the case of perfect synchronization and when the offsets are estimated. To reduce the impact of the residual phase and frequency offsets in cooperating signals, a low-rate feedback scheme is also investigated. It is shown that improved outage probability and reduced packet error rate (PER) performance can be achieved even for long data packets. The proposed cooperative retransmission scheme is found to outperform simple retransmission by the source as well as decode-and-forward cooperation.

QoS Guarantee for Service Classes based on Performance Analysis of Cross-Layer Retransmission Scheme (다 계층 재전송 방식 성능 분석을 통한 서비스별 QoS 보장 기법)

  • Go, Kwang-Chun;Lee, Hyun-Jin;Kim, Jae-Hyun;Choo, Sang-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.95-104
    • /
    • 2010
  • In wireless communication system, a variety of retransmission algorithms are used in order to improve the quality of service of users. But the system may be inefficient because retransmission algorithms operate independently with other layers. Also, the quality of service can be degraded due to the unnecessary retransmission of packets. To solve these problems, the study on the cross-layer retransmission schemes have been widely performed. However, in order to apply cross-layer retransmission schemes to wireless communication system, whether the performance of cross-layer retransmission schemes meets QoS requirements of each service class has to be verified. Thus, this paper proposes the mathematical model for analyzing the performance of the cross-layer retransmission schemes and derives both the suitable retransmission scheme and the optimal retransmission parameter on each service class. The proposed mathematical model selects the MCS level based on channel state information and The performance analysis is comparatively easy in case that HARQ, ARQ, and AMC schemes are combined. The proposed mathematical model also enables the analysis of the packet transmission delay. To utilize the analytical model, this paper derives the suitable retransmission scheme and the optimal retransmission parameter for delay sensitive services in WiMAX system. Also, the proposed analytical model can be used to analyze the performance of wireless communication system such as LTE and WLAN.

Power Control with Limited Information in Distributed ARQ Retransmission Schem (분산 재전송 시스템에서 제한된 정보를 이용한 전력제어 성능 분석)

  • Kim, Haesoo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1849-1855
    • /
    • 2017
  • The main purpose of cooperative communications is improvement of communication quality and efficient use of transmission power. In this paper, a cooperative retransmission method is proposed, where neighbor nodes that receive messages correctly between transmit and receive nodes will participate in retransmission of the erroneous packet of the direct link. When the proposed retransmission method is used, the performance of the PER can be greatly improved. In case that the limited information is included in the NACK message, the transmit power of the retransmission packet can be reduced using the proper power control method.

Improving the TCP Retransmission Timer Adjustment Mechanism for Constrained IoT Networks

  • Chansook Lim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2024
  • TCP is considered as one of the major candidate transport protocols even for constrained IoT networks..In our previous work, we investigated the congestion control mechanism of the uIP TCP. Since the uIP TCP sets the window size to one segment by default, managing the retransmission timer is the primary approach to congestion control. However, the original uIP TCP sets the retransmission timer based on the fixed RTO, it performs poorly when a radio duty cycling mechanism is enabled and the hidden terminal problem is severe. In our previous work, we proposed a TCP retransmission timer adjustment scheme for uIP TCP which adopts the notion of weak RTT estimation of CoCoA, exponential backoffs with variable limits, and dithering. Although our previous work showed that the proposed retransmission timer adjustment scheme can improve performance, we observe that the scheme often causes a node to set the retransmission timer for an excessively too long time period. In this work, we show that slightly modifying the dithering mechanism of the previous scheme is effective for improving TCP fairness.

A Buffer Size-based Retransmission Persistence Control for ARQ Protocols (버퍼 크기 기반 자동재전송 프로토콜의 재전송 지속성 제어)

  • Kim, Beom-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.487-492
    • /
    • 2011
  • This paper proposes a retransmission persistence control scheme for automatic retransmit request (ARQ) protocol to improve the reliability of a wireless link. Most existing ARQ protocols adopt a fixed retransmission persistence. If the ARQ protocol sets the retransmission persistence too low, there is a limitation in providing transmission reliability. On the other hand, if the ARQ protocol sets the retransmission persistence too high, it increases transmission delay and jitter. In order to figure out the problem, the proposed scheme considers the number of frames in the buffer in controlling the retransmission persistence; it improves the throughput of ARQ protocol by increasing the retransmission persistence when the number of frames is small and decreasing otherwise. Simulation results show that the proposed scheme decreases the transmission delay and jitter significantly comparing to the existing schemes.

Queuing Analysis Model for the SR-ARQ Protocol with a Finite Retransmission Persistence (제한된 재전송 횟수를 지원하는 SR-ARQ 프로토콜의 큐잉 지연 분석 모델)

  • Han, Je-Chan;Kim, Beom-Joon;Lee, Jai-Yong
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.523-530
    • /
    • 2008
  • In this paper, we analyze the mean queuing delay of selective-repeat automatic repeat request (SR-ARQ) protocol with the finite retransmission persistence. The retransmission persistence means the willingness of the protocol to retransmit a lost (or corrupted) packet to ensure reliable packet delivery across a lossy link. According to the retransmission persistence, SR-ARQ protocols have a different performance in terms of both packet delay and link reliability. So far, however, there is no serious study in the effect of the retransmission persistence on the SR-ARQ performance. We present a simple M/G/1 queuing model for the SR-ARQ protocol with the finite retransmission persistence by using the ideal SR-ARQ approximation. The mean queuing delay is obtained from the queuing model and verified its accuracy through the simulation results using the OPNET simulator. Both the analytical predictions and simulation results clearly show the effect of retransmission persistence on the queuing delay of the SR-ARQ protocol in various network conditions: packet loss rate and traffic condition over a wireless link.

Selfish Retransmission Scheme in IR-UWB System (IR-UWB 통신 기반의 이기적 재전송 프로토콜)

  • Kang, Ji-Myung;Park, Young-Jin;Lee, Soon-Woo;Kim, Yong-Hwa;Kim, Kwan-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.383-388
    • /
    • 2009
  • In this paper, we focus on the retransmission following transmission failure in impulse radio ultra wideband (IR-UWB). The reasons of transmission failure are classified and a new 'selfish' retransmission protocol is proposed because time hopping can support multiple transmissions at the same time. Selfish retransmission protocol retransmits packets immediately without any kind of timeout or channel observation. Simulation results show that the proposed protocol improves throughput up to 50% and decreases retransmission delay also up to 70%, compared to a conventional retransmission system in IR-UWB.

Adaptive ARQ Method for Enhancements of LTE MAC Protocol

  • Jung, Yonghak;Kwon, Youngmi
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1992-1999
    • /
    • 2016
  • In layered communication architecture, each layer is designed to service its own functions to higher layer while getting serviced by lower layer. Usually layered architectures are not optimized in a total view of whole services and functions. So cross layer design pursues performance enhancements by optimizing in various ways. In LTE, MAC layer uses HARQ mechanism and RLC layer uses ARQ mechanism for retransmission. According to the 3GPP 36.331 specification, two layers' cooperation may not happen in an optimized way. This paper suggests an adaptive MAC layer approach which RLC layer's function might be initiated in MAC layer in advance to utilize MAC layer's idling wasting time for RLC layer's next decision. This adaptive ARQ method in MAC layer speeds up the next retransmission and reduces the overall transmission time. Emulation shows the improved performance in total retransmission time and retransmission success ratio. In wireless shadow area, the retransmission occurs frequently. Our approach has strong points in this poor wireless condition.