초록
온라인 리뷰는 네트워크 기술의 발전을 통해 그 영향력이 확대되고 있다. 특히, 사전 정보로 통해 소비가 결정되는 영화는 온라인 리뷰가 소비자들의 영화 결정에도 중요한 영향을 미치고 있다. 이에 본 연구는 영화관련 온라인 리뷰를 영화 소비 후 소비자들의 평가 정보라 가정하고, 이를 활용한 영화 흥행성과 예측모형을 제시하고자 한다. 선행 연구를 통하여 영화관련 온라인 리뷰에 감독, 배우, 스토리, 효과 등의 독립적인 속성 및 종합적인 평가가 있음을 확인하였으며, 본 연구에서는 각 속성을 2개 이상 평가하고 있는 복합형 리뷰 10가지를 추가하여 총 15가지로 온라인 리뷰 분류하였다. 2010년부터 2013년까지 개봉한 한국영화 중 상업영화 209개의 개봉 첫 주 온라인 리뷰를 온라인 리뷰 마이닝을 진행하고, 최종적으로 리뷰 마이닝 결과를 판별분석을 통한 영화 흥행성적 예측모형을 제시한다. 판별분석을 실시한 결과, 온라인 리뷰로부터 도출된 감독, 배우, 효과 및 스토리 관련 평가와 개봉 첫 주 전체 온라인 리뷰 수가 유의미하게 변별하였다.
Since a movie is an experience goods, purchase can be decided upon preliminary information and evaluation. There are ongoing researches on what impact online reviews might have on movie revenues. Whereas research in the past was focused on the effect of online reviews. The influence of online reviews appears to be significant in products like a movie because it is difficult to evaluate the feature prior to "consuming" the product. Since an online review is regarded to be objective, consumers find it more trustworthy. Contrary to prior research focused on movie review ratings and volume, we focus moves on movie features related specific reviews. This research proposes a predictive model for movie revenue generation. We decided 15 criteria to classify movie features collected from online reviews through the online review mining and made up feature keyword list each criterion. In addition, we performed data preprocessing and dimensional reduction for data mining through factor analysis. We suggest the movie revenue predictive model is tested using discriminant analysis. Following the discriminant analysis, we found that online review factors can be used to predict movie popularity and revenue stream. We also expect using this predictive model, marketers and strategic decision makers can allocate their resources in more parsimonious fashion.