DOI QR코드

DOI QR Code

경화도에 따른 고분자 기지 복합재의 경화 수축률 거동

Cure Shrinkage Behavior of Polymer Matrix Composite according to Degree of Cure

  • 권혁 (한국항공대학교 항공재료공학과) ;
  • 황성순 (한국항공대학교 항공재료공학과) ;
  • 최원종 (한국항공대학교 항공재료공학과) ;
  • 이재환 ((주) 대한항공 항공우주사업본부) ;
  • 김재학 ((주) 대한항공 항공우주사업본부)
  • 투고 : 2013.12.04
  • 심사 : 2014.06.19
  • 발행 : 2014.06.30

초록

복합재료의 경화 시 발생하는 수축 변형률은 복합재료 구조물 내에 잔류응력을 발생시키며 이러한 잔류응력은 spring-in, spring-out, warpage와 같은 구조물 변형의 원인이 된다. 본 연구에서는 Hexcel사의 "Hexply M21EV/34%/UD268NFS/IMA-12K" prepreg를 사용하였다. 시험편의 경화에 따른 cure shrinkage 변화를 DSC(differential scanning calorimetry)와 TMA(thermomechanical analyzer)를 이용하여 측정하였다. 수지의 수축률은 $140{\sim}240^{\circ}C$ 구간에서 $20^{\circ}C$ 간격으로 질소 분위기에서 측정하였다. 경화도는 dynamic과 isothermal DSC scanning을 통하여 측정된 반응열을 이용하여 산출하였으며, DSC 시험은 Argon 분위기에서 수행하였다. 시험결과, 열경화성 수지는 27~80% 경화도에서 급격한 수축이 일어났으며, 경화온도가 높을수록 더 낮은 경화도에서 수축이 시작되는 것을 알 수 있었다.

Cure shrinkage during cure process of polymer matrix composites develope residual stress that cause some structural deformation, such as spring-in, spring-out and warpage. The carbon/epoxy prepreg used in this study is Hexply M21EV/34%/UD268NFS/IMA-12K supplied by Hexcel corp. Cure shrinkage and degree of cure measured by TMA(thermomechanical analyzer) and DSC(differential scanning calorimetry). Cure shrinkages are measured by TMA within a temperature range of $140{\sim}240^{\circ}C$ in a nitrogen atmosphere, and degree of cure determined by the heat of reaction using dynamic and isothermal DSC runs in argon atmosphere. As a result, the cure shrinkage is increased dramatically in a degree of cure range between 27~80%. the higher the cure temperature, the lower the degree of cure occurring to begin cure shrinkage.

키워드

참고문헌

  1. Schubel, P.J., Warrior, N.A., and Rudd, C.D., "Surface Quality Prediction of Thermoset Composite Structures Using Geometric Simulation Tools," Plastics, Rubber and Composites, Vol. 36, No. 10, 2007, pp. 428-437. https://doi.org/10.1179/174328907X248249
  2. Shah, D.U., and Peter, J.S., "Evaluation of Cure Shrinkage Measurement Techniques for Thermosetting Resins," Polymer Testing, Vol. 29, No. 6, 2010, pp. 629-639. https://doi.org/10.1016/j.polymertesting.2010.05.001
  3. Bogetti, T.A., and Gillespie, J.W., "Process-induced Stress and Deformation in Thick-section Thermoset Composite Laminates," Journal of Composite Materials, Vol. 26, No. 5, 1992, pp. 626-660. https://doi.org/10.1177/002199839202600502
  4. Haider, M., Hubert, P., and Lessard, L., "Resin Containing Low Profile Additives", Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 3, 2007, pp. 994-1009. https://doi.org/10.1016/j.compositesa.2006.06.020
  5. Niu, M.C.Y., "Composite Airframe Structures: Practical Design Information and Data", Conmilit Press Ltd., Hong Kong, 1992.
  6. Berglund, Larsa, and Josem Kenny, "Processing Science for High Performance Thermoset Composites," SAMPE Journal, Vol. 27, 1991, pp. 27-37.
  7. Johnston, Andrew A. "An Integrated Model of the Development of Process-induced Deformation in Autoclave Processing of Composite Structures", Diss. University of British Columbia, 1997.
  8. Yu, H., Mhaisalkar, S.G., and Wong, E.H., "Cure Shrinkage Measurement of Nonconductive Adhesives by Means of a Thermomechanical Analyzer," Journal of Electronic Materials, Vol. 34, No. 8, 2005, pp. 1177-1182. https://doi.org/10.1007/s11664-005-0248-5
  9. AITM 3-0002, "Analysis of Non Metallic Materials (Uncured) by Differential Scanning Calorimetry," Airbus Industries Test Method, 1995.
  10. ASTM Standard E831, 2012, "Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis," ASTM International, West Conshohoken, PA, 2012, DOI:10.1520/E0831-12, www.astm.org.
  11. ASTM Standard E2070, 2002, "Standard Test Method for Kinetic Parameters by Differential Scanning Calorimetry Using Isothermal Methods," ASTM International, West Conshohoken, PA, 2012, DOI:10.1520/E2070-08, www.astm.org.
  12. Dusi, M.R., Lee, W.I., Ciriscioli, P.R., and Springer, G.S., "Cure Kinetics and Viscosity of Fiberite 976 Resin," Journal of Composite Materials Vol. 21, No. 3, 1987, pp. 243-261. https://doi.org/10.1177/002199838702100304

피인용 문헌

  1. Prediction of Spring-in of Curved Laminated Composite Structure vol.43, pp.1, 2015, https://doi.org/10.5139/JKSAS.2015.43.1.1