DOI QR코드

DOI QR Code

A New Coumarin-Based Colorimetric and Fluorometric Sensor for Cu2+

  • An, Kyoung-Lyong (Interface Materials & Process Research Group, Korea Research Institute of Chemical Technology) ;
  • Park, Koon Ha (Department of Chemistry, Chungnam National University) ;
  • Jun, Kun (Interface Materials & Process Research Group, Korea Research Institute of Chemical Technology)
  • Received : 2014.03.03
  • Accepted : 2014.03.18
  • Published : 2014.07.20

Abstract

Keywords

Experimental

Synthesis of Sensor A. To a solution of compound 2 (0.3 g, 1.3 mmol) in absolute ethanol (15 mL), was added 2- hydroxycinnamaldehyde (0.22 g, 1.4 mmol). After the mixture was stirred for 20 h at room temperature, a reddish precipitate was filtered, washed with ethanol (10 mL) and cold acetone (20 mL). It was dried under vacuum to afford a reddish crystalline solid (0.24 g, 50%). HRMS (EI): 362.1627 (calcd. for C22H22N2O3, 362.1630); 1H-NMR (DMSO-d6, 500 MHz) δ 10.14 (s, 1H), 8.85 (d, 1H), 7.69 (s, 1H), 7.59 (d, 1H), 7.46 (d, 1H), 7.43 (s, 1H), 7.18 (t, 1H), 7.10 (m, 1H), 6.89 (d, 1H), 6.83 (t, 1H), 6.72 (d, 1H), 6.55 (s, 1H), 3.43 (m, 4H), 1.12 (t, 6H); 13C NMR (DMSO-d6, 125 MHz) δ 162.7, 158.0, 155.8, 154.2, 149.9, 139.1, 132.9, 130.4, 129.1, 128.5, 127.8, 122.3, 119.3, 116.0, 109.3, 108.3, 96.3, 43.9, 12.2.

References

  1. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  2. (a) Zhou, X.; Yu, B.; Guo, Y.; Tang, X.; Zhang, H.; Liu, W. Inorg. Chem. 2010, 49, 4002. https://doi.org/10.1021/ic901354x
  3. (b) Lin, W.; Yuan, L.; Cao, X.; Tan, W.; Feng, Y. Eur. J. Org. Chem. 2008, 29, 4981.
  4. (c) Tang, L.; Guo, J.; Wang, N. Bull. Korean Chem. Soc. 2013, 34, 159. https://doi.org/10.5012/bkcs.2013.34.1.159
  5. (d) Li, X. L.; He, Y. W.; Ahn, K. I.; Yang, S. I. Bull. Korean Chem. Soc. 2013, 34, 1871. https://doi.org/10.5012/bkcs.2013.34.6.1871
  6. (a) An, K. L.; Lee, S. O.; Koh, S. D.; Shin, S. R.; Shin, J. I.; Park, S. Y.; Son, Y. A.; Park, K. H.; Jun, K. Bull. Korean Chem. Soc. 2014, 35, 277. https://doi.org/10.5012/bkcs.2014.35.1.277
  7. (b) Kursunlu, A. N.; Koc, Z. E.; Obali, A. Y.; Guler, E. J. Lumin. 2014, 149, 215. https://doi.org/10.1016/j.jlumin.2014.01.019
  8. (c) Lee, H. G.; Kim, K. B.; Park, G. J.; Na, Y. J.; Jo, H. Y.; Lee, S. A.; Kim, C. Inorg. Chem. Commun. 2014, 39, 61. https://doi.org/10.1016/j.inoche.2013.10.049
  9. (a) Callan, J. F.; de Silva, A. P.; Magri. D. C. Tetrahedron 2005, 61, 8551. https://doi.org/10.1016/j.tet.2005.05.043
  10. (b) Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y. J. Am. Chem. Soc. 2003, 125, 4451. https://doi.org/10.1021/ja028650l
  11. (c) Shao, N.; Zhang, Y.; Cheung, S.; Yang, R.; Chan, W.; Mo, T.; Li, K.; Liu, F. Anal. Chem. 2005, 77, 7294. https://doi.org/10.1021/ac051010r
  12. (a) Haddou, H.; Wiskur, S.; Lynch, V.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123, 11296. https://doi.org/10.1021/ja011905v
  13. (b) Gunnlaugsson, T.; Kruger, P.; Jensen, P.; Tierney, J.; Ali, H.; Hussey, G. J. Org. Chem. 2005, 70, 10875. https://doi.org/10.1021/jo0520487
  14. (a) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517. https://doi.org/10.1021/cr078203u
  15. (b) Kozlowski, H.; Janicka-Klos, A.; Brasun, J.; Gaggelli, E.; Valensin, D.; Valensin, G. Coord. Chem. Rev. 2009, 253, 2665. https://doi.org/10.1016/j.ccr.2009.05.011
  16. Li, J.; Uversky, V. N.; Fink, A. L. Biochemistry 2001, 40, 11604. https://doi.org/10.1021/bi010616g
  17. Zhang, L. M.; Lichtmannegger, J.; Summer, K. H.; Webb, S.; Pickering, I. J.; George, G. N. Biochemistry 2009, 48, 891. https://doi.org/10.1021/bi801926e
  18. Karr, J. W.; Szalai, V. A. J. Am. Chem. Soc. 2007, 129, 3796. https://doi.org/10.1021/ja068952d
  19. Tewari, B. B. J. Chem. Eng. Data 2010, 55, 1779. https://doi.org/10.1021/je900501u
  20. (a) Li, N.; Xiang, Y.; Tong, A. Chem. Commun. 2010, 3363.
  21. (b) Kim, M. H.; Jang, H. H.; Yi, S.; Chang, S. K.; Han, M. S. Chem. Commun. 2009, 4838.
  22. (c) Yang, Z.; Liu, Z.; Chen, Y.; Wang, X.; He, W.; Lu, Y. Org. Biomol. Chem. 2012, 10, 5073. https://doi.org/10.1039/c2ob25516b
  23. Yuan, L.; Lin, W.; Song, J.; Yang, Y. Chem. Commun. 2011, 12691.
  24. Hua, J.; Wang, Y. G. Chem. Lett. 2005, 34, 98. https://doi.org/10.1246/cl.2005.98
  25. Guha, S.; Lohar, S.; Sahana, A.; Banerjee, A.; Safin, D. A.; Babashkina, M. G.; Mitoraj, M. P.; Bolte, M.; Garcia, Y.; Mukhopadhyay, S. K.; Das, D. Dalton Trans. 2013, 42, 10198. https://doi.org/10.1039/c3dt51045j
  26. Jiang, J.; Gou, C.; Luo, J.; Yi, C.; Liu, X. Inorg. Chem. Commun. 2012, 15, 12. https://doi.org/10.1016/j.inoche.2011.09.027
  27. Garcia-Beltran, O.; Mena, N.; Berrios, T. A.; Castro, E. A.; Cassels, B. K.; Nunez, M. T.; Aliaga, M. E. Tetrahedron Lett. 2012, 53, 6598. https://doi.org/10.1016/j.tetlet.2012.09.111
  28. Zhou, Y.; Chu, K.; Zhen, H.; Fang, Y.; Yao, C. Spectrochim. Acta A 2013, 106, 197. https://doi.org/10.1016/j.saa.2012.12.092
  29. Gocmen, A.; Bulut, M.; Erk, C. Pure Appl. Chem. 1993, 65, 447.

Cited by

  1. Fluorescence “off” and “on” signalling of esculetin in the presence of copper and thiol: a possible implication in cellular thiol sensing vol.17, pp.9, 2018, https://doi.org/10.1039/C8PP00157J
  2. ) vol.43, pp.2, 2019, https://doi.org/10.1039/C8NJ04732D
  3. Synthesis, quantum chemical, in vitro acetyl cholinesterase inhibition and molecular docking studies of four new coumarin based pyrazolylthiazole nuclei vol.1168, pp.None, 2014, https://doi.org/10.1016/j.molstruc.2018.05.017
  4. Recurrent π-π stacking motifs in three new 4,5-dihydropyrazolyl-thiazole-coumarin hybrids: X-ray characterization, Hirshfeld surface analysis and DFT calculations vol.44, pp.34, 2020, https://doi.org/10.1039/d0nj02931a