DOI QR코드

DOI QR Code

A Novel Single-Source Precursor Route for the Synthesis of Blue-Green Phosphor SrS:Ce3+

  • Song, Yishan (Department of Chemistry, College of Food Science & Technology, Shanghai Ocean University) ;
  • Li, Zheng (Department of Chemistry, College of Food Science & Technology, Shanghai Ocean University) ;
  • Ma, Chenchen (Department of Chemistry, College of Food Science & Technology, Shanghai Ocean University)
  • Received : 2014.01.09
  • Accepted : 2014.03.06
  • Published : 2014.07.20

Abstract

Keywords

Experimental

Preparation of SrS:Ce3+ phosphor. In a typical synthesis, 99 mol % of SrCl2·6H2O and 1 mol % of Ce(NO3)3·6H2O were dissolved in 95% ethanol, and the solution was stirred for 2 h to form a homogeneous solution. Then another Na-DDTC (DDTC = N,N-diethyldithiocarbamate) ethanol solution (the DDTC/Sr2+ ratio was 2:1 with a slight excess of ligand) was added slowly to the metal salt solution under stirring condition. The stirring of the resultant solution was continued for another 2 h (the solution was concentrated by solvent evaporation), which resulted in precipitation of the yellow colored Sr0.99Ce0.01-DDTC2 complex. The precipitate of product was filtered and then dried at 40 ℃ for 6 h. The solid was then fired in a tube furnace at 700 ℃, 800 ℃, and 900 ℃ for 3 h under N2 atmosphere.

Measurements and Apparatus. The X-ray powder diffraction (XRD) patterns of all samples were performed on a Bruker/D8-Advance with CuKα radiation (λ = 1.540 Å). The luminescence (excitation and emission) spectra for the solid sample were determined with a Perkin-Elmer LS-55 spectrophotometer, whole excitation and emission slit width were 10 and 5 nm, respectively.

References

  1. Stripp, K. F.; Ward, R. J. Am. Chem. Soc. 1948, 70, 401. https://doi.org/10.1021/ja01181a126
  2. Burbano, D. C. R.; Rodriguez, E.M.; Dorenbos, P.; Bettinelli, M.; Capobianco, J. A. J. Mater. Chem. C 2014, 2, 228. https://doi.org/10.1039/c3tc31909a
  3. Sharma, G.; Gosavi, S. W.; Lochab, S. P.; Singh, N. J. Lumin. 2012, 132, 2619. https://doi.org/10.1016/j.jlumin.2012.04.052
  4. Park, B. J.; Seo, H. S.; Ahn, J. T.; Oh, D. K.; Chung, W. J.; Han, J. Y.; Jang, H. S.; Jeon, D. Y. Etri J. 2009, 31, 803. https://doi.org/10.4218/etrij.09.0209.0235
  5. Sharma, G.; Vij, A.; Lochab, S. P.; Singh, N. Appl. Surf. Sci. 2011, 257, 2764. https://doi.org/10.1016/j.apsusc.2010.10.058
  6. Lei, B.; Liu, Y.; Liu, J.; Ye, Z.; Shi, C. J. Solid State Chem. 2004, 177, 1333. https://doi.org/10.1016/j.jssc.2003.11.006
  7. Huttl, B. Adv. Mater. Opt. Electron. 1993, 3, 131.
  8. Horng, R. H.; Wuu, D. S. J. Appl. Phys. 1997, 82, 1363. https://doi.org/10.1063/1.365912
  9. Vij, A.; Gautam, S.; Kumar, R.; Chawla, A. K.; Chandra, R.; Singh, N.; Chae, K. H. J. Alloys Comp. 2012, 527, 1. https://doi.org/10.1016/j.jallcom.2012.02.063
  10. Jia, D. D.; Wang, X. J. Opt. Mater. 2007, 30, 375. https://doi.org/10.1016/j.optmat.2006.11.061
  11. Meng, J. X.; Wan, W. J.; Fan, L. L.; Yang, C. T.; Chen, Q. Q.; Cao, L. W.; Man, S. Q. J. Lumin. 2011, 131, 134. https://doi.org/10.1016/j.jlumin.2010.09.038
  12. Vij, A.; Gautam, S.; Kumar, R.; Chawla, A. K.; Lochab, S. P.; Chandra, R.; Singh, N. Opt. Mater. 2010, 33, 58. https://doi.org/10.1016/j.optmat.2010.07.024
  13. Morishita, T.; Matsuyama, H.; Matsui, M.; Tonomura, S.; Wakihara, M. App. Surf. Sci. 2000, 157, 61. https://doi.org/10.1016/S0169-4332(99)00518-8
  14. Kojima, Y.; Aoyagi, K.; Yasue, T. J. Lumin. 2005, 115, 13. https://doi.org/10.1016/j.jlumin.2005.01.011
  15. Yamashita, N.; Michitsuji, Y.; Asano, S. J. Electrochem. Soc. 1987, 134, 2932. https://doi.org/10.1149/1.2100315
  16. Nakao, Y. J. Phys. Soc. Jpn. 1980, 48, 534. https://doi.org/10.1143/JPSJ.48.534
  17. Thiyagarajan, P.; Kottaisamy, M.; Ramachandra Rao, M. S. Mater. Res. Bull. 2007, 42, 753. https://doi.org/10.1016/j.materresbull.2006.07.010
  18. Sun, J. Y.; Liu, Z. X.; Du, H. Y. J. Rare Earth. 2011, 29, 101. https://doi.org/10.1016/S1002-0721(10)60411-5
  19. Kim, K. N.; Kim, J. M.; Choi, K. J.; Park, J. K.; Kim, C. H. J. Am. Ceram. Soc. 2006, 89, 3413. https://doi.org/10.1111/j.1551-2916.2006.01139.x
  20. Fang, M.; Wang, H. Q.; Tan, X. L.; Cheng, B. C.; Zhang, L. D.; Xiao, Z. D. J. Alloy. Compd. 2008, 457, 413. https://doi.org/10.1016/j.jallcom.2007.02.154
  21. Kojima, Y.; Takahashi, Ao.; Umegaki, T. J. Lumin. 2014, 146, 42. https://doi.org/10.1016/j.jlumin.2013.08.063
  22. Jiang, W. W.; Xu, Z.; Zhang, F. J.; Zhang, X. Y.; Wang, L. W. J. Mater. Process.Tech. 2007, 184, 93. https://doi.org/10.1016/j.jmatprotec.2006.11.007

Cited by

  1. Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects vol.117, pp.5, 2017, https://doi.org/10.1021/acs.chemrev.6b00691