DOI QR코드

DOI QR Code

Confidence Intervals for High Quantiles of Heavy-Tailed Distributions

꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간

  • Kim, Ji-Hyun (Department of Statistics and Actuarial Science, Soongsil University)
  • 김지현 (숭실대학교 정보통계보험수리학과)
  • Received : 2014.03.07
  • Accepted : 2014.04.11
  • Published : 2014.06.30

Abstract

We consider condence intervals for high quantiles of heavy-tailed distribution. The asymptotic condence intervals based on the limiting distribution of estimators are considered together with bootstrap condence intervals. We can also apply a non-parametric, parametric and semi-parametric approach to each of these two kinds of condence intervals. We considered 11 condence intervals and compared their performance in actual coverage probability and the length of condence intervals. Simulation study shows that two condence intervals (the semi-parametric asymptotic condence interval and the semi-parametric bootstrap condence interval using pivotal quantity) are relatively more stable under the criterion of actual coverage probability.

꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간을 연구하였다. 통계량의 극한 분포에 근거한 점근적 방법과 붓스트랩 방법을 같이 고려하였다. 이 두 방법에 모수적, 비모수적, 준모수적 기법을 각각 적용할 수 있는데, 전체 11가지 신뢰구간의 성능을 실제신뢰수준과 길이로 비교하였다. 모의실험 결과 준모수적이면서 점근적인 신뢰구간과 축량을 이용하는 준모수적 붓스트랩 신뢰구간이 실제신뢰수준의 기준에서 안정된 성능을 보인다는 것을 알 수 있었다.

Keywords

References

  1. Bahadur, R. R. (1966). A note on quantiles in large samples, Annals of Mathematical Statistics, 37, 577-580. https://doi.org/10.1214/aoms/1177699450
  2. Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer.
  3. Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Chapman and Hall.
  4. Kim, J. (2011). Semi-parametric bootstrap con dence intervals for high-quantiles of heavy-tailed distributions, Communications of the Korean Statistical Society, 18, 717-732. https://doi.org/10.5351/CKSS.2011.18.6.717
  5. Kysely, J. (2010). Coverage probability of bootstrap con dence intervals in heavy-tailed frequency models, with application to precipitation data, Theoretical and Applied Climatology, 101, 345-361. https://doi.org/10.1007/s00704-009-0190-1
  6. McNeil, A., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management, Princeton University Press.
  7. Pickands, J. (1975). Statistical inference using extreme order statistics, Annals of Statistics, 3, 119-131. https://doi.org/10.1214/aos/1176343003