DOI QR코드

DOI QR Code

시계열모형에 의한 전력판매량 예측

Prediction of Electricity Sales by Time Series Modelling

  • 투고 : 2014.02.10
  • 심사 : 2014.05.20
  • 발행 : 2014.06.30

초록

전력수급의 정확한 예측은 국민들의 일상적 생활 유지, 산업활동, 그리고 국가경영을 위하여 매우 중요하다. 본 연구에서는 시계열모형화에 의해 전력판매량을 예측한다. 실제 자료분석을 통하여 입력시계열로서 냉난방도일과 개입변수로 펄스함수를 사용한 전이함수모형이 다른 시계열모형에 비해서 제곱근평균제곱오차 및 평균절대오차의 의미에서 더 우수하였다.

An accurate prediction of electricity supply and demand is important for daily life, industrial activities, and national management. In this paper electricity sales is predicted by time series modelling. Real data analysis shows the transfer function model with cooling and heating days as an input time series and a pulse function as an intervention variable outperforms other time series models for the root mean square error and the mean absolute percentage error.

키워드

참고문헌

  1. Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis, Forecasting and Control, Prentice Hall.
  2. Cho, S. and Son, Y. S. (2011). Time Series Analysis using SAS/ETS, Yulgokbooks.
  3. Dickey, D. A. and Fuller, W. A. (1979). Distribution of estimation for autoregressive time series with a unit root, Journal of the American Statistical Association, 74, 427-431.
  4. Dickey, D. A., Hasza, D. P. and Fuller, W. A. (1984). Testing for unit roots in seasonal time series, Journal of the American Statistical Association, 79, 355-367. https://doi.org/10.1080/01621459.1984.10478057
  5. Korea Power Exchange (2010). Prediction of Electricity Supply and Demand for the Next Two Years(2010.07-2010.12), Report, Korea Power Exchange.
  6. Lee, J., Sohn, H. and Kim, S. (2013). Daily peak load forecasting for electricity demand by time series models, The Korean Journal of Applied Statistics, 26, 349-360. https://doi.org/10.5351/KJAS.2013.26.2.349
  7. Ministry of Knowledge Economy (2013). The 6th Basic Plan for Long-term Electricity Supply and Demand (2013-2027), MKE Notice 2013-63, Ministry of Knowledge Economy.
  8. Montgomery, D. C. and Johnson, L. A. (1976). Forecasting and Time Series Analysis, McGraw-Hill, Inc.
  9. Nam, B. W., Song, K. B., Kim, K. H. and Cha, J. M. (2008). The spatial electric load forecasting algorithm using multiple regression analysis method, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 22, 63-70. https://doi.org/10.5207/JIEIE.2008.22.2.063
  10. SAS Institute Inc. (2008). SAS/ETS 9.2 User's Guide, SAS Institute Inc. Cary, NC.
  11. Song, K. B. (2007). Various models of Fuzzy Least-Squares Linear Regression for load forecasting, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 21, 61-67. https://doi.org/10.5207/JIEIE.2007.21.7.061
  12. Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing, Journal of the Operational Research Society, 54, 799-805. https://doi.org/10.1057/palgrave.jors.2601589
  13. Wei, W. W. S. (1990). Time Series Analysis, Addison-Wesley Publishing Company.
  14. Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages, Management Science, 6, 324-342. https://doi.org/10.1287/mnsc.6.3.324
  15. Yoon, S. H., Lee, Y. S. and Park, J. (2009). Statistical modeling for forecasting maximum electricity demand in Korea, Communications of the Korean Statistical Society, 16, 127-135. https://doi.org/10.5351/CKSS.2009.16.1.127

피인용 문헌

  1. Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods vol.9, pp.9, 2016, https://doi.org/10.3390/en9090727