DOI QR코드

DOI QR Code

DCBA-DEA: A Monte Carlo Simulation Optimization Approach for Predicting an Accurate Technical Efficiency in Stochastic Environment

  • Qiang, Deng (School of Management, University Sains Malaysia) ;
  • Peng, Wong Wai (School of Management, University Sains Malaysia)
  • Received : 2014.02.09
  • Accepted : 2014.03.29
  • Published : 2014.06.30

Abstract

This article describes a 2-in-1 methodology utilizing simulation optimization technique and Data Envelopment Analysis in measuring an accurate efficiency score. Given the high level of stochastic data in real environment, a novel methodology known as Data Collection Budget Allocation-Data Envelopment Analysis (DCBA-DEA) is developed. An example of the method application is shown in banking institutions. In addition to the novel approach presented, this article provides a new insight to the application domain of efficiency measurement as well as the way one conducts efficiency study.

Keywords

References

  1. Banker, R. D., Kotarac, K., and Neralic, L. (2013), Sensitivity and stability in stochastic data envelopment analysis, Journal of the Operational Research Society, 65(4), 1-14.
  2. Charnes, A., Cooper, W. W., and Rhodes, E. (1978), Measuring the efficiency of decision making units, European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
  3. Chen, C. H. and Lee, L. H. (2010), Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, World Scientific Publishing Co., Singapore.
  4. Cooper, W. W. (2013), data envelopment analysis. In:Gass, S. I. and Fu, M. C. (eds.), Encyclopedia of Operations Research and Management Science, Springer, Heidelberg, 349-358.
  5. Cooper, W. W., Huang, Z., and Li, S. X. (1996), Satisficing DEA models under chance constraints, Annals of Operations Research, 66(4), 279-295. https://doi.org/10.1007/BF02187302
  6. Cooper, W. W., Seiford, L. M., and Tone, K. (2000), Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References, and DEASolver Software, Kluwer Academic, Boston, MA.
  7. Despotis, D. K. and Smirlis, Y. G. (2002), Data envelopment analysis with imprecise data, European Journal of Operational Research, 140(1), 24-36. https://doi.org/10.1016/S0377-2217(01)00200-4
  8. Dyson, R. G. and Shale, E. A. (2010), Data envelopment analysis, operational research and uncertainty, Journal of the Operational Research Society, 61(1), 25-34. https://doi.org/10.1057/jors.2009.145
  9. Fried, H. O., Lovell, C. A. K., and Schmidt, S. S. (2008), The Measurement of Productive Efficiency and Productivity Growth, Oxford University Press, New York, NY.
  10. Kao, C. and Liu, S. T. (2009), Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks, European Journal of Operational Research, 196(1), 312-322. https://doi.org/10.1016/j.ejor.2008.02.023
  11. Lee, L. H., Chew, E. P., Frazier, P. I., Jia, Q. S., and Chen, C. H. (2013), Advances in simulation optimization and its applications, IIE Transactions, 45(7), 683-684. https://doi.org/10.1080/0740817X.2013.778709
  12. Ogawa, M. and Ishii, H. (2002), The total ranking method from multi-categorized voting data based on analytic hierarchy process, Industrial Engineering and Management Systems, 1(1), 93-98.
  13. Okudan, G. E. and Lin, C. Y. (2009), An exploration on the use of data envelopment analysis for product line selection, Industrial Engineering and Management Systems, 8(1), 47-53.
  14. Olesen, O. B. (2006), Comparing and combining two approaches for chance constrained DEA, Journal of Productivity Analysis, 26(2), 103-119. https://doi.org/10.1007/s11123-006-0008-4
  15. Olesen, O. B. and Petersen, N. C. (1995), Chance constrained efficiency evaluation, Management Science, 41(3), 442-457. https://doi.org/10.1287/mnsc.41.3.442
  16. Panta, M., Smirlis, Y., and Sfakianakis, M. (2013), Assessing bids of Greek public organizations service providers using data envelopment analysis, Operational Research, 13(2), 251-269. https://doi.org/10.1007/s12351-011-0108-4
  17. Seiford, L. M. (1996), Data envelopment analysis: the evolution of the state of the art (1978-1995), Journal of Productivity Analysis, 7(2/3), 99-137. https://doi.org/10.1007/BF00157037
  18. Simar, L. and Wilson, P. W. (1998), Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models, Management Science, 44(1), 49-61. https://doi.org/10.1287/mnsc.44.1.49
  19. Thanassoulis, E. (2001), Introduction to the Theory and Application of Data Envelopment Analysis: A Foundation Text with Integrated Software, Kluwer Academic Publisher, Norwell, MA.
  20. Trinh, T. H., Kachitvichyanukul, V., and Luong, H. T. (2012), A tradeoff between customer efficiency and firm productivity in service delivery systems, Industrial Engineering and Management Systems, 11(3), 224-232.. https://doi.org/10.7232/iems.2012.11.3.224
  21. Wong, W. P., Jaruphongsa, W., and Lee, L. H. (2008), Supply chain performance measurement system: a Monte Carlo DEA-based approach, International Journal of Industrial and Systems Engineering, 3(2), 162-188. https://doi.org/10.1504/IJISE.2008.016743
  22. Wong, W. P., Jaruphongsa, W., and Lee, L. H. (2011), Budget allocation for effective data collection in predicting an accurate DEA efficiency score, IEEE Transactions on Automatic Control, 56(6), 1235-1246. https://doi.org/10.1109/TAC.2010.2088870
  23. Zhu, J. (2003), Imprecise data envelopment analysis (IDEA): a review and improvement with an application, European Journal of Operational Research, 144(3), 513-529. https://doi.org/10.1016/S0377-2217(01)00392-7