DOI QR코드

DOI QR Code

Erosion Criteria for the Progressive Collapse Analysis of Reinforcement Concrete Structure due to Blast Load

철근콘크리트 건물의 폭발하중에 의한 연쇄붕괴 해석을 위한 침식 기준

  • Kim, Han-Soo (Dept. of Architectural Engineering, Konkuk University) ;
  • Ahn, Hyo-Seong (Dept. of Architectural Engineering, Konkuk University)
  • 김한수 (건국대학교 건축공학과) ;
  • 안효승 (건국대학교 건축공학과)
  • Received : 2014.03.27
  • Accepted : 2014.06.10
  • Published : 2014.06.30

Abstract

In this paper, reference erosion criteria value suitable for progressive collapse analysis of RC structure due to blast load is proposed. Erosion is fundamentally a numerical technique to overcome the problems such as large numerical errors or abrupt termination of analysis and previous study has been suggested value for blast analysis. But concrete has different stress-strain curve according to strain rate. Consequently, the erosion criteria for the realistic progressive collapse simulation were suggested by comparing experiment results and numerical analysis results. Finally, the real progressive collapse of Oklahoma Federal Building was analyzed by using the median value of two values. And as a result, the analysis result is the actual collapse of the well described.

이 논문에서는 철근콘크리트 건물의 폭발하중에 의한 연쇄붕괴 해석을 위한 적합한 침식 기준값을 제안하였다. 침식은 기본적으로 대변형에 의한 오류나 해석의 갑작스러운 종료 등의 문제를 극복하기 위한 수치해석 기법이며 선행연구에서 폭발해석에서의 적합한 침식기준 값을 제안했었다. 하지만 콘크리트는 변형률 속도에 따라 다른 스트레스-스트레인 곡선을 갖는다. 따라서 실험 결과와 수치해석 결과를 비교함으로써 실제와 같은 연쇄붕괴 시뮬레이션에 적합한 침식기준 값을 제안하였다. 최종적으로 실제 붕괴가 일어났던 오클라호마 연방정부 건물을 두 결과 값의 중간 값을 적용하여 유사 해석을 진행하였다. 그 결과, 해석 결과는 실제 붕괴를 잘 묘사하고 있다.

Keywords

References

  1. ASCE Standard ASCE/SEI 7-05 "Minimum Design Loads for Buildings and Other Structures," American Society of Civil Engineers, Reston, Virginia, USA, 2001.
  2. GSA, Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization, US General Services Administration, 2003.
  3. DoD, Design of Buildings to Resist Progressive Collapse, US Department of Defense, 2010.
  4. Kaewkulchai, G. and Williamson, E. B., "Beam Element Formulation and Solution Procedure for Dynamic Progressive Collapse Analysis," Computers & Structures, Vol. 82, 2004, pp. 639-651. https://doi.org/10.1016/j.compstruc.2003.12.001
  5. Kim, J. K. and Kim, T. W., "Evaluation of Progressive Collapse-resisting Capability of Steel Monment Frames Using the Nonlinear Dynamic Analysis Procedure," Journal of Computational Structural Engineering Institure of Korea, Vol. 20, No. 4, 2007, pp. 435-442.
  6. Kim, J. K., Ahn, D. W., and Kim, H. S., "Development of Progressive Collapse Analysis Program considering Dynamic Effects," Journal of Architectural Institute of Korea, Vol. 23, No. 6, 2007, pp. 21-29.
  7. Kim, H. S. and Park, J. P., "An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section," Journal of Computational Structural Engineering Institure of Korea, Vol. 23, No. 4, 2010, pp. 387-394.
  8. Kim, H. S. and Lee, J. Y., "An Evaluation of Blast Resistance Performance of RC Columns by Using P-M Interaction Diagram," Journal of Architectural Institute of Korea, Vol. 27, No. 10, 2011, pp. 47-54.
  9. Ahn, J. G., Kim, H. S., and Ahn, H. S., "Computational Simulation of Progressive Collapse of Reinforced Concrete Frame due to Blast Load," The Structural Desigh Of Talland Special Buildings, 2014. (will be published)
  10. Zukas, J. A., Introduction to Hydrocodes, Elsevier, UK, 2004, 313 pp.
  11. Kim, H. S., Ahn, H. S., and Ahn, J. G., "Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members," Journal of Architectural Institute of Korea, Vol. 30, No. 3, 2014, pp. 21-28.
  12. Luccionia, B. and Araozb, G., "Erosion Criteria for Frictional Materials under Blast Load," Mecanica Computacional, Vol. 30, 2011, pp. 1809-1831.
  13. Ansys, AUTODYN Theory Manual, Century Dynamics, 2005, pp. 204-206.
  14. Carriere, M., Heffoernan, P. J., Wight, R. G., and Braimah, A., "Behaviour of Steel Reinforced Polymer Strengthened RC Members under Blast Load," Canadian Journal of Civil Engineering, Vol. 36, No. 8, 2009, pp. 1356-1365. https://doi.org/10.1139/L09-053
  15. Luccionia, B. and Luegeb, M., "Concrete Pavement Slab under Blast Loads," International Journal of Impact Engineering, Vol. 32, No. 8, 2006, pp. 734-743.
  16. Grote, D., Park, S., and Zhou, M., "Dynamic Behaviour of Concrete at High Strain Rates," Journal of Impact Engineering, Vol. 25, No. 9, 2001, pp. 869-886. https://doi.org/10.1016/S0734-743X(01)00020-3
  17. Magnusson, J. and Hansson, H., "Numerical Simulations of Concrete Beams-A Principal Study," National Defence Research Establishment, Sweden, 2005, 63 pp.
  18. Yu, J. and Tan, K. H., "Experimental and Numerical Investigation on Progressive Collapse Resistance of Reinforced Concrete Beam Column Sub-Assemblages," Engineering Structures, Vol. 55, 2013, pp. 90-106. https://doi.org/10.1016/j.engstruct.2011.08.040
  19. ASCE, The Oklahoma City Bombing, 1996 pp. 1-26.
  20. Quan, X. and Birnbaum, N. K., "Computer Simulation of Impact and Collapse of New York World Trade Center North Tower on September 11," 20th International Symposium on Ballistics, 2002, pp. 22-27.