DOI QR코드

DOI QR Code

The Analysis for the Effect of Effective Compressibility on Oil Recovery in Polymer Flooded Heterogeneous Reservoir

폴리머 공법 적용 불균질 저류층에서의 유효 압축률이 오일생산에 미치는 영향 분석

  • Baek, Soohyun (Department of Natural Resources and Environment Engineering, Hanyang University) ;
  • Jung, Woodong (Department of Natural Resources and Environment Engineering, Hanyang University) ;
  • Sung, Wonmo (Department of Natural Resources and Environment Engineering, Hanyang University) ;
  • Seo, Junwoo (Department of Natural Resources and Environment Engineering, Hanyang University)
  • 백수현 (한양대학교 자원환경공학과) ;
  • 정우동 (한양대학교 자원환경공학과) ;
  • 성원모 (한양대학교 자원환경공학과) ;
  • 서준우 (한양대학교 자원환경공학과)
  • Received : 2014.05.30
  • Accepted : 2014.06.17
  • Published : 2014.06.28

Abstract

The compressibility of fracture in naturally fractured reservoir is larger than the compressibility of matrix in rock, although the compressibility of a typical rock is very small. The effective compressibility including the fracture compressibility should be considered to predict oil recovery correctly. It is hard to quantify changes of fracture aperture and pore volume in reservoir without the effective compressibility. In this study, oil recovery is analyzed by commercial simulator concerning the fracture compressibility based on fracture properties. We found that the effective compressibility affects oil recovery with change of polymer flooding factors such as polymer molar weight, concentration and injection rate. The estimated cumulative oil production is smaller with the effective compressibility than without it. Also, bottomhole pressure decreases rapidly without considering effective fracture compressibility.

불균질한 자연균열 저류층에서 암체의 압축률은 매우 작은 값을 가지는 반면에 균열의 압축률은 상대적으로 큰 값을 갖는다. 균열의 압축률을 포함한 유효 압축률을 고려하지 않을 경우에는 균열의 간극 변화로 인한 공극 부피의 변화를 반영할 수 없기 때문에 정확한 오일 회수를 예측할 수 없다. 본 연구에서는 기존의 연구들에서 암체의 압축률만을 고려하여 오일 회수를 분석했던 것과 달리, 암체와 균열의 압축률을 모두 고려한 유효 압축률을 적용해서 오일 회수량을 분석하였다. 폴리머 공법에서 균열의 압축률이 폴리머의 주입에 미치는 영향을 이해하기 위해, 폴리머의 분자량, 농도, 주입속도에 따른 오일 회수량을 분석하였다. 유효 압축률을 고려할 경우 폴리머 분자량, 농도, 주입속도가 높아질수록 유효 압축률을 고려하지 않은 경우가 고려한 경우보다 누적 오일 생산량이 높게 나타났다. 또한 공저 압력의 경우에도 유효 압축률을 고려하지 않은 경우가 고려한 경우보다 빠르게 급감하여 오일 생산량에 영향을 주는 것을 확인할 수 있다.

Keywords

References

  1. Aguilera, R. (1999) Recovery Factors and Reserves in Naturally Fractured Reservoirs. J. of Canadian Petroleum Technology, v.38, p.15-18.
  2. Aguilera, R. (2006) Effect of Fracture Compressibility on Oil Recovery from Stress-Sensitive Naturally Fractured Reservoirs. J. of Canadian Petroleum Technology, v.45, p.49-59.
  3. Ahmed, M.S., Ahmed, G., Mahmoud, K., Ahmed, A. and Ahmed, H. (2012) Overview of Polymer Flooding(EOR) in North Africa Fields-Elements of Designing A New Polymer/Surfactant Flood Offshore(Case Study). SPE North Africa Technical Conference and Exhibition, Cairo, Egypt, Feb. 20-22, SPE 151952.
  4. Emami, M., Kharrat, R. and Ghzanfari, M.H. (2008) Effect of Heterogeneity of Layered Reservoirs in Polymer Flooding: An Experimental Approach Using Five-Spot Glass Micromodel. SPE Europec/EAGE Annual Conference and Exhibition, Rome, Italy, Jun. 9-12, SPE 113820.
  5. Gregory, S.D. (1984) Determination of Molecular Weights and Molecular Weight Distribution of Polyacrylamides. 59th Annual Technical Conference and Exhibition, Houston, Texas, USA, Sep. 16-19, SPE 13150.
  6. Jones, F.O. (1975) A Laboratory Study of the Effects of Confining Pressure on Fracture Flow and Storage Capacity in Carbonate Rocks. J. of Petroleum Technology, v.27, p.21-27. https://doi.org/10.2118/4569-PA
  7. Kim, T.H. (2007) Fracture Characterization and Estimation of Fracture Porosity of Naturally Fractured Reservoirs with No Matrix Porosity Using Stochastic Fractal Models. Dissertation of Doctor of philosophy in Texas A&M University.
  8. Lee, G.S. (2008) Numerical Simulation of Mobility Control Process by Polymer Flooding. J. of The Korean Society of Mineral and Energy Resources Engineering, v.45, p.433-440.
  9. Muralidharan, V., Chakravarthy, D., Putra, E. and Schechter, D.S. (2004) Investigating Fracture Aperture Distributions Under Various Stress Conditions Using X-ray CT Scanner. Petroleum Society's 5th Canadian International Petroleum Conference, Alberta, Canada, Jun. 8-10, PETSOC 2004-230.
  10. Nelson, R.A. (2005) Geologic Analysis of Naturally Fractured Reservoirs. 2nd, Gulf Professional Publishing, Boston, p.82-93.
  11. Obuekwe, M. (2011) Polymer Flood Simulation in A Heavy Oil Field: Offshore Niger-Delta Experience. SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, Jul. 19-21, SPE 145027.
  12. Sayedakram, N.I. and Mamora, D. (2011) Simulation Study on Surfactant-Polymer Flood Performance in Fractured Carbonate Reservoir. SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, May 15-18, SPE 149106.
  13. Seo, J.W., Lee, T.H., Lee, Y.S., Sung, W.M. and Lee, J.H. (2009) Development of 3D DFN Model with Rectangular Fracture Type. J. of The Korean Society of Mineral and Energy Resources Engineering, v.46, p.279-288.
  14. STARS User Manual, Version 2012. Calgary, Alberta, Computer Modelling Group(CMG).
  15. Thomas, L.K., Dixon, T.N. and Pierson, R.G. (1983) Fractured Reservoir Simulation. J. of Society of Petroleum Engineers, v.23, p.42-54. https://doi.org/10.2118/9305-PA
  16. Wang, D., Seright, R.S., Shao, Z. and Wang, J. (2007) Key Aspects of Project Design for Polymer Flooding. SPE Annual Technical Conference and Exhibition, Anaheim, California, USA. Nov. 11-14, SPE 109682.