DOI QR코드

DOI QR Code

Assessment of Complementary Relationship Evapotranspiration Models for the Bokahcheon Upper-middle Watershed

보완관계법에 의한 증발산량 산정 모형의 평가 - 복하천 중상류 유역을 중심으로 -

  • Kim, Nam Won (Water Resources Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology) ;
  • Lee, Jeongwoo (Water Resources Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology)
  • 김남원 (한국건설기술연구원 수자원연구실) ;
  • 이정우 (한국건설기술연구원 수자원연구실)
  • Received : 2014.03.05
  • Accepted : 2014.05.13
  • Published : 2014.06.30

Abstract

The objective of this study is to evaluate the performance of the complementary relationship-based evapotranspiration models, namely, advection-aridity (AA) model of Brutsaert and Stricker and the CRAE model of Morton for estimating actual evapotranspiration. Both models were applied to the Bokhacheon middle-upper watershed, and their estimates were evaluated against the water balance estimate. The calculation was made on a daily basis and comparison was made on monthly and annual bases. For comparison, the water balance estimates were not obtained from the observed precipitation and streamflow data but were based on the simulated data by using integrated watershed model, SWAT-K which is the revised version of SWAT. The reason not to directly use the observed data for water balance estimate is that the credible record period is not sufficient and the streamflow has been altered due to water use and release. Overall, the results showed that both AA model and CRAE model with their original parameters overestimate annual and monthly evapotranspiration, and the large difference between the complementary relationship-based approach and the water balance approach occurs especially for the dry season from Nov. to Mar. It was found out that the parameters, particularly for the advection related parameter, must be recalibrated to accurately produce monthly and annual regional evapotranspiration for this study area.

본 연구에서는 잠재증발산량과 실제증발산량 간의 보완관계식을 이용한 대표적인 증발산량 산정모형인 Brutsaert and Stricker (1979)의 AA 모형과 Morton (1983)의 CRAE 모형의 적용성을 평가하였다. 이를 위해서 두 모형을 복하천 중상류 유역에 적용하여 유역평균 실제증발산량을 산정하고, 유역 물수지 결과와의 비교를 수행하였다. 연구 대상유역은 양질의 하천유량 자료 확보 기간이 짧고, 하천유량 자료 또한 인위적 물이용, 배출로 인해 교란되었기에 강수량, 유출량 등의 관측치 기반의 유역 물수지 결과 보다는 검보정이 잘된 유역수문모형 SWAT-K로 모의한 실제증발산량과의 비교를 통하여 AA 모형과 CRAE 모형으로 산정한 실제증발산량의 적정성을 평가하였다. AA 모형과 CRAE 모형의 의한 실제증발산량 모두 식생성장기에 과다하게 산정되는 경향을 나타내었고, 특히 AA 모형은 건조기간동안 실제증발산량이 과소하게 산정되었다. AA 모형과 CRAE 모형의 정도를 높이기 위해서 매개변수 보정을 수행한 결과, AA 모형의 경우는 건조기간 동안의 적합성을 높이기 위해서 이류항을 추가로 고려하고 Brutsaert and Stricker (1979)의 제안 값 ${\alpha}=1.26$ 보다는 작은 ${\alpha}=1.08$을 사용하였을 때, 그리고 CRAE 모형의 경우에는 Morton(1983)이 제안한 값 $b_1=14Wm^{-2}$, $b_2=1.12$ 보다는 각각 다소 크고 작은 값인$b_1=16Wm^{-2}$, $b_2=1.04$를 사용하였을 때에 연단위, 월단위, 그리고 월별 모두 가장 양호한 실제증발산량 값이 산정되었다.

Keywords

References

  1. Allen, R.G., Pereira, L.S., Raes, L.S., and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, 300 p.
  2. Arnold, J.G., Allen, P.M., and Bernhardt, G. (1993). "A comprehensive surface groundwater flow model." Journal of Hydrology, Vol. 142, pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  3. Barr, A.G., Kite, G.W., Granger, R., and Smith, C. (1997). "Evaluating three evapotranspiration methods in the slurp macroscale hydrological model." Hydrological Processes, Vol. 11, pp. 1685-1705. https://doi.org/10.1002/(SICI)1099-1085(19971030)11:13<1685::AID-HYP599>3.0.CO;2-T
  4. Bouchet, R.J. (1963). "Evapotranspiration reelle et potentielle, signification climatiqe." International Association of Hydrological Sciences Publication, Vol. 62, pp. 134-142.
  5. Brutsaert, W., and Stricker, H. (1979). "An advection-aridity approach to estimate actual regional evapotranspiration." Water Resources Research, Vol. 15, pp. 443-450. https://doi.org/10.1029/WR015i002p00443
  6. Doyle, P. (1990). "Modelling catchment evaporation: An objective comparison of the Penman and Morton approaches." Journal of Hydrology, Vol. 121, pp. 257-276. https://doi.org/10.1016/0022-1694(90)90235-P
  7. Fang, Z., Ren, L., Li, Q., Liu, X., Yuan, F., Zhao, D., and Zhu, Q. (2012). "Estimating and validating basin-scale actual evapotranspiration using MODIS images and hydrologic models." Hydrology Research, Vol. 43, pp. 156-166. https://doi.org/10.2166/nh.2011.129
  8. Gao, Y., and Long, D. (2008). "Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT." Hydrological Processes, Vol. 22, pp. 4850-4869. https://doi.org/10.1002/hyp.7104
  9. Githui, F., Selle, B., and Thayalakumaran, T. (2012). "Recharge estimation using remotely sensed evapotranspiration in an irrigation catchment in southeast Australia." Hydrological Processes, Vol. 26, pp. 1379-1389. https://doi.org/10.1002/hyp.8274
  10. Granger, R.J. (1991). Evaporation from natural nonsaturated surfaces. PhD Thesis, Department of Agricultural Engineering, University of Saskatchewan, Saskatoon. 140 pp.
  11. Granger, R.J., and Gray, D.M. (1990). "Examination of Morton's CRAE model for estimating daily evaporation from field-sized areas." Journal of Hydrology, Vol. 120, pp. 309-325. https://doi.org/10.1016/0022-1694(90)90156-R
  12. Gyeonggi Provincial Government (2006). General planning on Bokha stream maintenance, pp. 1-27.
  13. Haque, A. (2003). "Estimating actual areal evapotranspiration from potential evapotranspiration using physical models based on complementary relationships and meteorological data." Bulletin of Engineering Geology and the Environment, Vol. 62, pp. 57-63.
  14. Hargreaves, G.L., Hargreaves, G.H., and Riley, J.P. (1985). "Agricultural benefits for Senegal River Basin." Journal of Irrigation and Drainage Engineering, Vol. 111, No. 2, pp. 113-124. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:2(113)
  15. Hobbins, M.T., Ramirez, J.A., and Brown T.C. (2001b). "The complementary relationship in estimation of regional evapotranspiration: An enhanced Advection-Aridity model." Water Resources Research, Vol. 37, No. 5, pp. 1389-1403. https://doi.org/10.1029/2000WR900359
  16. Hobbins, M.T., Ramirez, J.A., Brown, T.C., and Claessens, L. (2001a). "The complementary relationship in estimation of regional evapotranspiration: The Complementary Relationship Areal Evapotranspiration and Advection-Aridity models." Water Resources Research, Vol. 37, No. 5, pp. 1367-1387. https://doi.org/10.1029/2000WR900358
  17. Immerzeel, W.W., and Droogers, P. (2008). "Calibration of a distributed hydrological model based on satellite evapotranspiration." Journal of Hydrology, Vol. 349, pp. 411-424. https://doi.org/10.1016/j.jhydrol.2007.11.017
  18. Jensen, M.E., Burman, R.D., and Allen, R.G. (ed). (1990). Evapotranspiration and irrigation water requirements, ASCE Manuals and Reports on Engineering Practice No. 70, ASCE, N.Y., 332 pp.
  19. Kim, N.W., and Kim, C.G. (2004). "Comparison of Penman- Monteith method and Morton CRAE method for esimating areal evapotranspiration." 2004 Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 1077-1081.
  20. Kim, N.W., Chung, I.M., Won, Y.S., and Arnold, J.G. (2008). "Development and application of the integrated SWAT-MODFLOW model." Journal of Hydrology, Vol. 356, pp. 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  21. Kim, N.W., Lee, J., and Lee, J.E., (2013). "Estimation of natural streamflow for the Bokhacheon middle-upper watershed." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 12, pp. 1169-1800. https://doi.org/10.3741/JKWRA.2013.46.12.1169
  22. Kim, N.W., Won, Y.S., Lee, J., Lee, J.E., and Jeong, J.H. (2011). "Hydrologic impacts of urban imperviousness in White Rock Creek watershed." Transactions of the ASABE, Vol. 54, No. 4, pp. 1759-1771. https://doi.org/10.13031/2013.39848
  23. Lemeur, R., and Zhang, L. (1990). "Evaluation of three evapotranspiration models in terms of their applicability for an arid region." Journal of Hydrology, Vol. 114, pp. 395-411. https://doi.org/10.1016/0022-1694(90)90067-8
  24. Liu, S., Sun, R., Sun, Z., Li, X., and Liu, C. (2006). "Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin." Hydrological Processes, Vol. 20, pp. 2347-2361. https://doi.org/10.1002/hyp.6048
  25. Monteith, J.L. (1981). "Evaporation and surface temperature." Quart. J. Roy. Meteorol. Soc. Vol. 107, pp.1-27. https://doi.org/10.1002/qj.49710745102
  26. Morton, F.I (1975). "Estimating evaporation and transpiration from climatological observations." J. Appl Meteorol., Vol. 14, pp. 488-497. https://doi.org/10.1175/1520-0450(1975)014<0488:EEATFC>2.0.CO;2
  27. Morton, F.I. (1969). "Potential evaporation as a manifestation of regional evaporation." Water Resources Research, Vol. 5, pp. 1244-1255. https://doi.org/10.1029/WR005i006p01244
  28. Morton, F.I. (1976). "Climatological estimates of evapotranspiration." Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, ASCE, Vol. 102(HY3), pp. 275-291.
  29. Morton, F.I. (1978). "Estimating evapotranspiration from potential evaporation: practicality of an iconoclastic approach." Journal of Hydrology, Vol. 38, pp. 1-32. https://doi.org/10.1016/0022-1694(78)90129-4
  30. Morton, F.I. (1983). "Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology." Journal of Hydrology, Vol. 66, pp. 1-76. https://doi.org/10.1016/0022-1694(83)90177-4
  31. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2005). Soil and water assessment tool: Theoretical documentation. Version 2005. Temple Tex.: USDA-ARS Grassland, Soil, and Water Research Laboratory, Blackland Research Center, Texas Agricultural Experiment Station.
  32. Penman, H.L. (1948). "Natural evaporation from open water, bare soil, and grass." Proceedings of Royal Society of London, A193, pp. 120-146.
  33. Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using largescale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  34. Shim, S.-C. (1996). "Estimation method of evapotranspiration through vegetation monitoring over wide area." Korean Society of Surveying Geodesy Photogrammetry and Cartography, Vol. 14, No. 1, pp. 81-88.
  35. Shim, S.C. (1996). "Estimation of water balance based on satellite data in the Korean Peninsula." Journal of Korea Water Resources Association, KWRA, Vol. 29, No. 4, pp. 203-214.
  36. Shin, S.C., Hwang, M.H., Ko, I.H., and Lee, S.J. (2006). "Suggestion of simple method to estimate evapotranspiration using vegetation and temperature information." Journal of Korea Water Resources Association, KWRA, Vol. 39, No. 4, pp. 363-372. https://doi.org/10.3741/JKWRA.2006.39.4.363
  37. Shin, S.C., Sawamoto, M., and Kim, C.H. (1995). "Estimation of evapotranspiration using NOAA-AVHRR data." Journal of Korea Water Resources Association, KRWA, Vol. 28, No. 1, pp. 71-79.
  38. Spittlehouse, D.L. (1989). "Estimating evapotranspiration from land surfaces in British Columbia." Estimation ofAreal Evapotranspiration, IAHS, Publ., 177, pp. 245-253.
  39. Sun, C., Jiang, D., Wang, J., and Zhu, Y. (2010). "A new approach to accurate validation of remote sensing retrieval of evapotranspiration based on data fusion." Hydrology and Earth System Sciences Discussions, Vol. 7, pp. 1745-1784. https://doi.org/10.5194/hessd-7-1745-2010
  40. Wanchang, Z.Y., insheng, Z., Ogawa, K., and Yamaguchi, Y. (1999). "Observation and estimation of daily actual evapotranspiration and evaporation on a glacierized watershed at the headwater of the Urumqi River, Tianshan, China." Hydrological Processes, Vol. 13, pp. 1589-1601. https://doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1589::AID-HYP829>3.0.CO;2-8
  41. Xu, C.-Y., and Singh, V.P. (2005). "Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions." Journal of Hydrology, Vol. 308, pp. 105-121. https://doi.org/10.1016/j.jhydrol.2004.10.024
  42. Xu, C.-Y., Seibert, J., and Halldin, S. (1996). "Regional water balance modelling in the NOPEX area-development and application of monthly water balance models." Journal of Hydrology, Vol. 201, pp. 289-310.

Cited by

  1. Complementary Relationship Based Evaportranspiration Estimation Model Suitable for the Hancheon and Kangjeongcheon Watersheds in Jeju Island vol.47, pp.12, 2014, https://doi.org/10.3741/JKWRA.2014.47.12.1155
  2. Estimation of Actual Evapotranspiration and Storage Change for the Bokahcheon Upper-middle Watershed vol.47, pp.7, 2014, https://doi.org/10.3741/JKWRA.2014.47.7.615