DOI QR코드

DOI QR Code

The Study on Development and Verification of Rainfall-Runoff Simulator for LID Technology Verification

LID 기술의 효율성 검증을 위한 강우-유출 모의장치 개발 및 검증실험에 관한 연구

  • Jang, Young Su (Dept. of School of Civil & Environmental Eng., Pusan National Univ.) ;
  • Kim, Mi Eun (Dept. of School of Civil & Environmental Eng., Pusan National Univ.) ;
  • Baek, Jong Seok (Dept. of School of Civil & Environmental Eng., Pusan National Univ.) ;
  • Shin, Hyun Suk (Dept. of School of Civil & Environmental Eng., Pusan National Univ.)
  • 장영수 (부산대학교 공과대학 사회환경시스템공학과) ;
  • 김미은 (부산대학교 공과대학 사회환경시스템공학과) ;
  • 백종석 (부산대학교 공과대학 사회환경시스템공학과) ;
  • 신현석 (부산대학교 공과대학 사회환경시스템공학과)
  • Received : 2014.03.31
  • Accepted : 2014.05.12
  • Published : 2014.06.30

Abstract

Climate change and urbanization have affected a increase of peak discharge and water pollution etc. In a view of these aspects, the LID(Low Impact Development) technology has been highlighted as one of adjustable control measures to mimic predevelopment hydrologic condition. Many LID technologies have developed, but there is a lack of studies with verification of LID technology efficiency. Therefore this study developed a rainfall-runoff simulator could be possible to verify LID technology efficiency. Using this simulator, this study has experimented the rainfall verification through the rainfall distribution experiment and the experiment to show the relation between inflow and effective rainfall in order to sprinkle the equal rainfall in each unit bed. As a result, the study defined the relation between allowable discharge range and RPM by nozzle types and verified the hydrologic cycle such as the relation between infiltration rate, surface runoff and subsurface runoff at pervious area and impervious area through the rainfall-runoff experiment.

최근 도시화 및 기후변화에 의한 홍수피해의 증가로 인하여 이에 대응하는 방안으로 저영향개발(LID) 요소기술에 관하여 다양하게 개발이 되고 있다. 하지만 이러한 요소기술에 대한 효율을 검증할 수 있는 표준화된 검증방법 및 기기는 부재한 실정이다. 본 연구에서는 LID 기법에 대한 물순환의 효율성 검증이 가능한 강우-유출 모의장치를 개발하였다. 소유역 내 강우가 균등하게 분사될 수 있도록 강우공간분포실험 및 유입유량-유효우량 관계 실험을 통하여 강우를 검증하고 유입되는 강우와 이로 인해 발생되는 침투 및 지표유출 관계 실험을 실시하였다. 그 결과 노즐의 종류에 따른 적정유량범위와 RPM의 관계를 정리하였으며 강우-유출 모의장치를 이용한 실험을 통해 투수면과 불투수면에서의 강우 시의 수문학적 물순환(지표유출, 중간유출, 침투량)의 관계를 정량적으로 검증하였다.

Keywords

References

  1. Bhattacharyya, S. Marina Dan, A.K. Sen (2000). "Modelling of drop size distribution of rain from rain rate and attenuation measurements at millimeter and optical wavelengths." International Journal of Infrared and Millimeter Waves, Vol. 21, No. 12, pp. 2065-2075. https://doi.org/10.1023/A:1006792706134
  2. Cho, E.Y. (2012). The Analysis of LID Adaptation Efficiency on Urban Basin based on SWMM-LID Model. Pusan National University Master Thesis.
  3. http://stormwatercenter.colostate.edu/. ; Colorado State University Stomwater Center
  4. http://www.low-impactdevelopment.org; U.S. EPA, (2007)
  5. http://www.sdsu.edu/. ;San Diego State University
  6. Joshua Russell Sorenson (2004). "The use of large plot rainfall simulation to investigate runoff generation on the edwards plateau."
  7. Koo, Y.M., Jo, J.J., Kim, Y.D., and Park, J.H. (2013). A study on Runoff Analysis of Urban Watershed by Hydrologic Infiltration Experiment of Permeable Pavement. https://doi.org/10.12652/Ksce.2013.33.2.559
  8. Lee, H., Jung, D.J., Kim, Y.B., and Kim, Y.T. (2009). "An Experimental Study on the Analysis of Infiltration Capacity of the Permeable Block." Journal of Korean Society ofHazard Mitigation, Vol. 9, No. 4, pp. 99-106.
  9. Lee, J.E., Yeo, W.G., Shim, J.H., and Kang, T.H. (2001). "Analysis of Stormwater Runoff Reduction Effects by Using Porous Pavement." Journal of the Korean Society of Civil Engineers, Vol. 21, No. 6, pp. 645-654.
  10. Lee, J.M., Hyun, K.H., Lee, Y.S., Kim, J.G., Park, Y.B., and Choi, J.S. (2011). "Analysis of Water Cycle Effect by Plan of LID-decentralized Rainwater Management Using SWMM-LID Model in a Low-carbon Green Village." LHI Journal, Vol. 2, No. 4, pp. 503-507. https://doi.org/10.5804/LHIJ.2011.2.4.503
  11. National Disaster Management Institute. (2002). Study on the Storage and Infiltration Facilities for Reducing of Runoff Quantity(V), pp. 44-56.
  12. Navas, A., Alberto, F., Machin, J., and Galan A. (1990). "Design and operation of a rainfall simulator for field studies of runoff and soil erosion." Soil Technology, Vol. 3, pp. 385-397. https://doi.org/10.1016/0933-3630(90)90019-Y
  13. Paul T., and Willis, Paul Tattelman (1989). "Drop-Size Distributions Assoicated with intense Rainfall." Journal of Applied Meteorology, Vol. 28, pp. 3-15. https://doi.org/10.1175/1520-0450(1989)028<0003:DSDAWI>2.0.CO;2
  14. Yun, Y.N. (2007). Hydrology. Chungmungak, pp. 7, 135

Cited by

  1. Application of LID Methods for Sustainable Management of Small Urban Stream Using SWMM vol.36, pp.10, 2014, https://doi.org/10.4491/KSEE.2014.36.10.691
  2. Analysis on Rainfall Distribution in a Large Experimental Rainfall Simulator with Fixed Nozzle Arrangement vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8116
  3. Back-Calculation of Soil-Water Characteristics Curve for Permeable Pavement Material Based on Infiltration Tests vol.15, pp.6, 2015, https://doi.org/10.9798/KOSHAM.2015.15.6.337