DOI QR코드

DOI QR Code

Simulation Conditions based Characteristics of Spatial Flood Data Extension

모의조건에 따른 홍수 유출자료의 공간적 확장 영향분석

  • Kim, Nam Won (Hydrology Research Div., Korea Institute of Construction Technology) ;
  • Jung, Yong (Hydrology Research Div., Korea Institute of Construction Technology) ;
  • Lee, Jeong Eun (Hydrology Research Div., Korea Institute of Construction Technology)
  • 김남원 (한국건설기술연구원, 수자원연구실) ;
  • 정용 (한국건설기술연구원, 수자원연구실) ;
  • 이정은 (한국건설기술연구원, 수자원연구실)
  • Received : 2014.02.20
  • Accepted : 2014.05.08
  • Published : 2014.06.30

Abstract

The effects of initial conditions and input values of the rainfall-runoff model were studied in the applications of a lumped concept model for flood event data extension. For the initial conditions of the rainfall-runoff model, baseflow effects and spatial distributions of saturation points ($R_{sa}$) for the storage function methods (SFM) were analyzed. In addition, researches on the effects of rainfall data conditions as input values for the rainfall-runoff model were performed. The Chungju Dam watershed was selected and divided into 3 catchments including smaller size of 22 sub-catchments. The observed discharge and inflow amounts at Yeongwol 1, Chungju Dam, and Yeongwol 2 water level stations were individually operated as criteria for flood data extension in 30 flood events from 1993 to 2009. Direct and base flow were distinguished from a stream flow. In order to test capability of flood data extension, obtained base flow was applied to the rainfall-runoff model for three water level stations. When base flow was adopted in the model, the Nash-Sutcliffe Efficiency(NSE) was increased. The numbers of over satisfaction for model performance (>0.5) were increased over 10%. Saturation points ($R_{sa}$) which strongly influence the runoff amount when rainfall starts were optimized based on the runoff amount at three water level stations. The sizes of saturation points for three locations were similar which means saturation point size is not depending on the runoff amount. The effects of rainfall information for flood runoff were tested at 2002ev1 and 2008ev1. When increased the amount of rainfall information, the runoff simulations were closer to the simulations with full of rainfall information. However, the size of improvement was not substantial on rainfall-runoff simulations in terms of the size of total amount of rainfall.

일괄형 수문모형(Lumped Model)을 활용한 홍수 유출자료의 공간확장에 영향을 미치는 강우-유출모형의 초기조건과 입력자료의 영향에 대해 연구하였다. 강우-유출모형의 초기조건으로는 기저유량 정보의 모형모의에 대한 영향과 저류함수법의 포화우량($R_{sa}$)의 공간분포에 대한 분석을 실시하였으며, 강우-유출모형의 입력자료로서 강우정보의 영향을 자료의 유무에 관련한 과거자료의 조건을 중심으로 그 영향을 분석하였다. 이를 위해 충주댐유역을 선정하였으며, 충주댐 유역을 대규모유역으로 정하고 이를 기준으로 3개 중규모유역과 22개의 소유역으로 구분하였다. 영월1, 충주댐, 영월2의 수위관측소를 70년대 수문자료 유무에 따라 중심 수위관측소로 선정하였으며 이들을 개별적 중심축으로 삼고 1993년부터 2009년까지 30개의 홍수사상을 이용해 홍수유출자료 확장의 특성을 분석하였다. 관측유출을 직접유출과 기저유출로 분류하고 산정된 기저유출을 강우-유출모의에 적용하였다. 기저유출의 적용 유무 조건하에서 세 곳의 수위관측소를 중심으로 각각의 자료 확장성을 파악하였다. 기저유출을 고려한 모델 모의시 Nash-Sutcliffe Efficiency (NSE) 값은 모델 모의 만족범위를 넘어서는 사상이 10% 이상 증가되었다. 강우에 대한 초기유출의 양을 결정하는 포화우량($R_{sa}$)의 분포는 세 곳 수위관측소의 유량값을 중심으로 중권역의 포화우량($R_{sa}$)을 최적화하는 경우, 중권역의 최적화된 포화우량($R_{sa}$) 값은 큰 차이를 보이지 않으며 포화우량($R_{sa}$) 분포가 강우사상과 유출량의 크기분포에 큰 영향을 받지 않았다. 홍수 유출자료의 강수자료 영향은 30개의 홍수사상 자료에서 자료의 이상치를 제외한 17개 홍수사상을 이용해 검증하였으며 강우자료가 많아질수록 오차 범위가 줄어듦을 보였다. 하지만, 전체 홍수사상의 규모에 비해 그 영향이 크지 않는 것으로 파악되었다.

Keywords

References

  1. Andreassian, V. (2004). "Waters and forests: from historical controversy to scientific debate." J ofHydrology, Vol. 291, pp. 1-27. https://doi.org/10.1016/j.jhydrol.2003.12.015
  2. Andreassian, V., Perrin, C., Michel, C., Usart-Sanchez, I., and Lavabre, J. (2001). "Impact of imperfectct rainfall knowledge on the efficiency and the parameters of watershed models." J of Hydrology, Vol. 250, pp. 206-223. https://doi.org/10.1016/S0022-1694(01)00437-1
  3. Bardossy, A., and Singh, S.K. (2008). "Robust estimation of hydrological model parameters." Hydrology and Earth System Sciences. Vol. 12, pp. 1273-1283. https://doi.org/10.5194/hess-12-1273-2008
  4. Benson, M.A., (1962). Factors influencing the occurrence of floods in a humid region of diverse terrain. U.S. Geol. Surv., Water-Supply Pap., Vol. 1580-B, pp. 64.
  5. Bloschl, G., and Sivapalan, M. (1995). "Scale issues in hydrological modelling-a review." Hydrol. Process. Vol. 9, pp. 251-290. https://doi.org/10.1002/hyp.3360090305
  6. Brocca, L., Liersch S., Melone, F., Moramarco, and T., and Volk, M. (2013). "Application of a model-based rainfall-runoff database as efficient tool for flood risk management." Hydrol. Earth Syst. Sci., Vol. 17, pp. 3159-3169. https://doi.org/10.5194/hess-17-3159-2013
  7. Choi, Y.S., Kim, K.T., and Shim, M.P. (2010). "Discharge estimation at ungauged catchment using distributed rainfall-runoff model." J. of Korea Water Reso. Asso. Vol. 43, No. 4, pp. 353-365. https://doi.org/10.3741/JKWRA.2010.43.4.353
  8. Crochet, P. (2012). Evaluation of two delineation methods for regional flood frequency analysis in northern Iceland, Icelandic Meteorological Office. Report VI, Icelandic Meteorological Office, ISSN 1670-8261.
  9. Jeong, D.K., Jeon, Y.W., and Lee, B.H. (2008). "Improved Parameter Computation Method Applications of Storage Function Model for the Han River Basin." J. of Korean Society of Hazard Mitigation, Vol. 8, No. 2, pp. 149-158.
  10. Jung, J.H, and Yoon, Y.N. (2003). Practical designs in water resources, Goomibook, Seoul, pp. 2-3.
  11. Kim, N.W., and Won, Y.S. (2004). "Estimates of flood frequency in Korea." J. of Korea Water Reso. Asso., Vol. 37, No. 12, pp. 1019-1032. https://doi.org/10.3741/JKWRA.2004.37.12.1019
  12. Kim, N.W., Jung, Y., and Lee, J.E. (2013). "Spatial extension of runoff data in the applications of a lumped concept model." J. of Korea Water Reso. Asso. Vol. 46, pp. 923-934. https://doi.org/10.3741/JKWRA.2013.46.9.921
  13. Kirby, W.H., and Moss, M.E. (1987). "Summary of flood-frequency analysis in the United States." J. of Hydrology, Vol. 96, pp. 5-14. https://doi.org/10.1016/0022-1694(87)90139-9
  14. Kuczera, G., Kavetski, D., Franks, S., and Thyer, M. (2006). "Towards a bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters." J. of Hydrology. Vol. 331, pp. 161-177. https://doi.org/10.1016/j.jhydrol.2006.05.010
  15. Lee, K.S., Oh, J.-H., Park, K., and Sung, J.-H. (2013). "Estimation of design considering nonstationarity for river restoration in the Mokgamcheon." J of the Korean Soceity of Civil Engineers, Vol. 33, No. 4, pp. 1361-1375. https://doi.org/10.12652/Ksce.2013.33.4.1361
  16. Manus, C., Anquetin, S., Braud, I., Vandervaere, J.-P., Creutin, J.-D., Viallet, P., and Gaume, E. (2009). "A modelling approach to assess the hydrological response of small Mediterranean catchments to the variability of soils characteristics in a context of extreme events." Hydrol. Earth Syst. Sci. Vol. 13, pp. 79-97. https://doi.org/10.5194/hess-13-79-2009
  17. Ministiry of Land, Infrasturture and Transport (2005). Installation of integrated flood control system with dam operation in Han River Watershed, Research Report, K-Water.
  18. Moriasi, D.N., Arnold, J.G., Van Liew M.W., Bingner R.L., Hrmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." American Society of Agricultural and Biological Engineers, Vol. 50, No. 3, pp. 885-900.
  19. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." J. of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  20. Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., and Anquetin, S. (2008). "Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged bains." J. of Hydrology, Vol. 362, pp. 274-290. https://doi.org/10.1016/j.jhydrol.2008.08.023
  21. Oudin, L., Andreassian, V., Lerat, J., and Michel, C. (2008). "Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments." J. of Hydrology, Vol. 357, pp. 303-316. https://doi.org/10.1016/j.jhydrol.2008.05.021
  22. Petrow, T., and Merz, B. (2009). "Trends in flood magnitude, Frequency and seasonality in Gemany in the preiod 1951-2002." J. of Hydrology, Vol. 371, No. 1-4, pp. 129-141. https://doi.org/10.1016/j.jhydrol.2009.03.024
  23. Samuel, J., Coulibaly, P., and Metcalfe, R.A. (2012). "Identification of rainfall-runoff model for improved baseflow estimation in ungauged basins." Hydrol. Process. Vol. 26, pp. 356-366. https://doi.org/10.1002/hyp.8133
  24. Zrinji, Z., and Burn, D.H. (1994). Flood frequency analysis for ungauged sites using a region of influence approach. J. of Hydrology, Vol. 153, pp. 1-21. https://doi.org/10.1016/0022-1694(94)90184-8

Cited by

  1. Regional frequency analysis using spatial data extension method : II .Flood frequency inference for ungaged watersheds vol.49, pp.5, 2016, https://doi.org/10.3741/JKWRA.2016.49.5.451
  2. Regional frequency analysis using spatial data extension method : I. An empirical investigation of regional flood frequency analysis vol.49, pp.5, 2016, https://doi.org/10.3741/JKWRA.2016.49.5.439
  3. Dam Effects on Spatial Extension of Flood Discharge Data and Flood Reduction Scale I vol.48, pp.3, 2015, https://doi.org/10.3741/JKWRA.2015.48.3.209
  4. Dam Effects on Spatial Extension of Flood Discharge Data and Flood Reduction Scale II vol.48, pp.3, 2015, https://doi.org/10.3741/JKWRA.2015.48.3.221