DOI QR코드

DOI QR Code

Enhanced Anti-oxidant Activity Effects of Smilax china L. Rhizome Water Extracts Added with Its Fermented Leaf Water Extracts

발효 청미래덩굴잎 추출물의 혼합에 의한 토복령의 항산화활성 증진효과

  • Lee, Sang-Il (Department. of Food, Nutrition and Cookery, Keimyung College) ;
  • Lee, Ye-Kyung (Center for Nutraceutical and Pharmaceutical Materials, Myongji University) ;
  • Kim, Soon-Dong (Center for Nutraceutical and Pharmaceutical Materials, Myongji University) ;
  • Shim, Soon-Mi (Department of Food Science and Technology and Carbohydrate Bioproduct Research Center, Sejong University) ;
  • Yang, Seung Hwan (Center for Nutraceutical and Pharmaceutical Materials, Myongji University) ;
  • Cheng, Jinhua (Center for Nutraceutical and Pharmaceutical Materials, Myongji University) ;
  • Suh, Joo-Won (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University)
  • Received : 2013.10.14
  • Accepted : 2013.11.21
  • Published : 2014.06.30

Abstract

To evaluate the improving effects of antioxidant activity, we observed antioxidant capacities such as electron donating ability (EDA), Ferric reducing antioxidant power (FRAP), inhibitory activity of xanthine oxidase (XO) and aldehyde oxidase (AO), and sensory characteristics on mixture of Smilax china L. root water extract added with water extract of fermented S. china L. leaf by Aspergillus oryzae (FSCL). Those contents of mixture with higher ratio of FSCL were proportionally high. And OD475 of mixture with higher ratio of FSCL was almost proportionally high ($R^2=0.9850$). Antioxidant capacities of EDA and FRAP of the mixture was higher than that of non-mixture. In addition, XO inhibitory activity ($IC_{50}$) of A (1.19) was 59.80% higher than that of F (2.96), and the activity of mixture by the higher ratio of FSCL was proportionally low ($R^2=0.9490$). Taste acceptability of A was slightly higher than that of F, whereas that of C was highest. And color acceptability of 40-80% mixture was higher than those of A, F, and B. Overall acceptability of C and D was highest than those of others. Moreover, hot water extract of S. china L. leaf fermented with A. oryzae was maroon color, which looks like Puerh tea style, and mixture of S. china L. root extract added with hot water extract of S. china L. leaf was high acceptability of beverage. These results suggest that mixture of extract of S. china L. root and hot water extract of S. china L. leaf fermented with A. oryzae could improve antioxidant activities.

Aspergillus oryzae로 발효시킨 청미래덩굴(Smilax china L) 잎열수추출물(FSCL)의 첨가가 토복령 열수추출물(SCLR)의 항산화능에 미치는 영향을 조사하기 위하여 각 2% 열수추출물을 0:100 (A), 20:80 (B), 40:60 (C), 60:40 (D), 80:20 (E), 100:0 (F) (v/v)의 조건으로 혼합하였을 때 total polypheno l(TP) 및 total flavonoid (TF) 함량, $OD_{475}$, 전자공여능(EDA), 철환원력(FRAP), xanthine oxidase (XO) 및 aldehyde oxidase (AO)에 대한 저해활성과 관능적 품질을 조사하였다. A와 F의 TP 함량은 각각 3.78 및 9.37 mg/100 mL, TF 함량은 각각 0.24 및 1.84 mg/100 mL로 FSCL이 SCLR에 비하여 TP는 2.48배, TF는 7.67배가 높았으며 FSCL의 첨가비율이 높아질수록 비례적으로 높았다($R^2=0.9887$, $R^2=0.9592$). $OD_{475}$는 FSCL의 첨가비율이 높아질수록 거의 비례적으로 높은 흡광도를 나타내었다($R^2=0.9850$). EDA (% at mL)는 A (25.75%)에 비하여 F (54.63%)에서 2.12배가 높았으며 FSCL의 첨가비율이 높을수록 높아지는 경향을 보였다($R^2=0.9668$). FRAP ($Fe^{2+}{\mu}mole/g$ of dry basis)의 경우도 EDA와 마찬가지로 A (1.18)에 비하여 F (4.92)에서 4.17배가 높았으며, FSCL의 첨가비율이 높아질수록 비례적으로 높았다($R^2$=0.9907). A의 XO에 대한 저해활성(mg/mL of $IC_{50}$)은 1.19로 F의 2.96에 비하여 59.80%가 높았으며, FSCL의 첨가비율이 높아질수록 비례적으로 감소하였다($R^2$=0.9490). 그러나 AO에 대한 저해활성(mg/mL of $IC_{50}$)은 XO의 경우와 반대로 A (3.37)에 비하여 F (1.41)에서 58.16%의 높은 저해활성을 나타내었으며, FSCL의 첨가비율이 높아질수록 높아지는 경향을 보였다. 향에 대한 기호도는 A와 F에서는 각각 2.77 및 2.72점으로 비슷한 값을 보였으며 발효청미래덩굴잎 열수추출물을 20-80 비율로 혼합하였을 때는 다소 향상되는 경향을 나타내었으나 상호간의 유의적인 차이는 없었다. 그러나 40% 혼합(C) 하였을 때는 무첨가 경우(A 또는 F)에 비하여 유의적으로 향상되었다. 맛에 대한 기호도는 F에 비하여 A에서 다소 높은 값을 나타내었으며 C에서 가장 높은 값을 나타내었다. 색상에 대한 기호도는 40-80% 첨가한 경우가 A, F 및 B보다 높았다. 입맛과 종합적인 품질에 대한 기호도는 C, D에서 가장 높았다. 이상의 결과 A. oryzae로 발효시킨 청미래덩굴잎의 열수추출물은 보이차 스타일의 적갈색을 나타내며, 토복령 열수추출물과 혼합함으로써 음료로서의 기호성이 높아짐과 동시에 EDA 및 FRAP와 같은 항산화활성이 높아지나, ROS 생성계 효소로 알려져 있는 XO와 AO의 활성 억제현상은 상반된 결과를 나타내고 있어 이와 관련된 기능성 식품 개발에 대한 기초자료로 활용할 수 있을 것으로 생각한다. 그러나 현재 실험의 결과만으로는 어떠한 성분이 이러한 항산화활성의 변화에 관여하는지는 확인할 수 없으며 추후 계속적인 연구 검토가 필요하다.

Keywords

References

  1. Ali S, Pawa S, Naime M, Prasad R, Ahmad T, Farooqui H et al. (2008) Role of mammalian cytosolic molybdenum Fe-S flavin hydroxylases in hepatic injury. Life Sci 82, 780-8. https://doi.org/10.1016/j.lfs.2008.01.011
  2. Al-Salmy HS (2001) Individual variation in hepatic aldehyde oxidase activity. IUBMB Life 51, 249-53. https://doi.org/10.1080/152165401753311799
  3. Angayarkanni J, Palaniswamy M, Murugesan S, and Swaminathan K (2002) Improvement of tea leaves fermentation with Aspergillus spp. pectinase. J Biosci Bioeng 94, 299-303. https://doi.org/10.1016/S1389-1723(02)80167-0
  4. Arakawa H, Maeda M, Okubo S, and Shimamura T (2004) Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull 27, 277-81. https://doi.org/10.1248/bpb.27.277
  5. Beedham C (1987) Molybdenum hydroxylases: biological distribution and substrate-inhibitor specificity. Prog Med Chem 24, 85−121. https://doi.org/10.1016/S0079-6468(08)70420-X
  6. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature 181, 1199−200. https://doi.org/10.1038/1811199a0
  7. Cha BC and Lee EH (2007) Antioxidant activities of flavonoids from the leaves of Smilax china Linne. Kor J Pharmacogn 38, 31−6.
  8. Chena L, Yina H, Lanb Z, Maa S, Zhanga C, Yanga Z et al. (2011) Anti-hyperuricemic and nephroprotective effects of Smilax china L. J Ethnopharm 135, 399−405. https://doi.org/10.1016/j.jep.2011.03.033
  9. Chen CH, Chan HC, Chang YN, Liu BL, and Chen YS (2000) Effects of bacterial strains on sensory quality of Pu-erh tea in an improved pile-fermentation process. J Sens Stud 24, 534−53.
  10. Cheng DS and Hua XL (2006) Today's research of Smilax china. J Chin Med Mater 29, 90−3.
  11. Chen L, Yin H, Lan Z, Ma S, Zhang C, Yang Z et al. (2011) Anti-hyperuricemic and nephroprotective effects of Smilax china L. J Ethnopharm 135, 399−405. https://doi.org/10.1016/j.jep.2011.03.033
  12. Choi CH, Song ES, Kim SJ, and Kang MH (2003) Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J Food Sci Technol 35, 1216−20.
  13. Chung SR (1971) The influence of various mineral nutrient solutions on growth and alkaloid synthesis in Solanaceae. Ph D Thesis, Univ of Brussels, Belgium.
  14. Clarke SE, Harrell AW, and Chenery RJ (1995) Role of aldehyde oxidase in the in vitro conversion of famciclovir to penciclovir in human liver. Drug Metab Dispos 23, 251−4.
  15. Conklin D, Prough R, and Bhatanagar A (2007) Aldehyde metabolism in the cardiovascular system. Mol Biosyst 3, 136−50. https://doi.org/10.1039/B612702A
  16. Dambrova M, Uhlén S, Welch CJ, and Wikberg JES (1998) Identification of an N-hydroxyguanidine reducing activity of xanthine oxidase. Eur J Biochem 257, 178−84. https://doi.org/10.1046/j.1432-1327.1998.2570178.x
  17. Fabre G, Seither R, and Goldman D (1986) Hydroxylation of 4-amino-antifolates by partially purified aldehyde oxidase from rabbit liver. Biochem Pharmacol 35, 1325−30. https://doi.org/10.1016/0006-2952(86)90277-7
  18. Garattini E and Terao M (2011) Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 43, 374−86. https://doi.org/10.3109/03602532.2011.560606
  19. Garcia-Conesa MT, Ostergaard P, Kauppinen S, and Williamson G (2001) Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae. Carbohydrate Polymers 44, 319−24. https://doi.org/10.1016/S0144-8617(00)00248-4
  20. Hamzeh-Mivehroud M, Rahmani S, Rashidi MR, Hosseinpour Feizi MA, and Dastmalchi S (2013) Structure-based investigation of rat aldehyde oxidase inhibition by flavonoids. Xenobiotica 43, 661−70. https://doi.org/10.3109/00498254.2012.755228
  21. Hayes WA, Mills DS, Neville RF, Kiddie J, and Collins LM (2011) Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay. Anal Biochem 416, 202−5. https://doi.org/10.1016/j.ab.2011.05.031
  22. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, and Vavreinova S (2002) Buckwheat the source of antioxidant activity in functional foods. Food Res Int 35, 207−11. https://doi.org/10.1016/S0963-9969(01)00185-5
  23. Huang DY and Ichikawa Y (1994) Two different enzymes are primarily responsible for retinoic acid synthesis in rabbit liver cytosol. Biochem Biophys Res Commun 205, 1278−83. https://doi.org/10.1006/bbrc.1994.2803
  24. Itoh K (2009) Individual and strain differences of aldehyde oxidase in the rat. Yakugaku Zasshi 129, 1487-93. https://doi.org/10.1248/yakushi.129.1487
  25. Jordan CGM, Rashidi MR, Laljee H, Clarke SE, Brown JE, and Beedham C (1999) Aldehyde oxidase-catalyzed oxidation of methotrexate in the liver of guinea- pig, rabbit and man. J Pharm Pharmacol 51, 411−8. https://doi.org/10.1211/0022357991772619
  26. Kang YH, Park YK, Oh SR, and Moon KD (1995) Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol 27, 978−84.
  27. Kato S, Kawase T, Alderman J, Inatomi N, and Lieber C (1990) Role of xanthine oxidase in ethanol-induced lipid peroxidation in rats. Gastroenterology 98, 203−10. https://doi.org/10.1016/0016-5085(90)91311-S
  28. Kawashima K, Hosoi K, Naruke T, Shiba T, Kitamura M, and Watabe T (1999) Aldehyde oxidasedependent marked species difference in hepatic metabolism of the sedative-hypnotic, zeleplon, between monkeys and rats. Drug Metab Dispos 27, 422−8.
  29. Kitamura S, Nakatani K, Sugihara K, and Ohta S (1999) Strain differences of the ability to hydroxylate methotrexate in rats. Comp Biochem Physiol 122C, 331−6.
  30. Ko MS and Yang JB (2011) Antioxidant and antimicrobial activities of Smilax china leaf extracts. Korean J Food Preserv 18, 764−72. https://doi.org/10.11002/kjfp.2011.18.5.764
  31. Kundu TK, Hille R, Velayutham M, and Zweier JL (2007) Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys 460, 113−21. https://doi.org/10.1016/j.abb.2006.12.032
  32. Lesschaeve I and Noble AC (2005) Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am J Clin Nutr 81(Suppl), 330S−5S. https://doi.org/10.1093/ajcn/81.1.330S
  33. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP et al. (2007) A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol 113, 115−24. https://doi.org/10.1016/j.jep.2007.05.016
  34. Maia L and Mira L (2002) Xanthine oxidase and aldehyde oxidase: A simple procedure for the simultaneous purification from rat liver. Arch Biochem Biophys 400, 48−53. https://doi.org/10.1006/abbi.2002.2781
  35. Meda A, Lamien CE, Romito M, Millogo J, and Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in burkina fasan honey, as well as their radical scavenging activity. Food Chem 91, 571−7. https://doi.org/10.1016/j.foodchem.2004.10.006
  36. Mercader J, Ribot J, Murano I, Felipe F, Cinti S, Bonet ML et al. (2006) Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology 147, 5325−32. https://doi.org/10.1210/en.2006-0760
  37. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM et al. (2003) Phenolic compounds and total antioxidant potential of commercial wines. Food Chem 82, 409−16. https://doi.org/10.1016/S0308-8146(02)00590-3
  38. Mira L, Maia L, Barreira L, and Manso CF (1995) Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Arch Biochem Biophys 318, 53−8. https://doi.org/10.1006/abbi.1995.1203
  39. Moriwaki Y, Yamamoto T, Nasako Y, Takahashi S, Suda M, Hiroishi K et al. (1993) In vitro oxidation of pyrazinamide and allopurinol by rat liver aldehyde oxidase. Biochem Pharmacol 46, 975−81. https://doi.org/10.1016/0006-2952(93)90661-F
  40. Ngure MF, Wanyokob JK, Mahungua SM, and Shitandia AA (2009) Catechins depletion patterns in relation to theaflavin and thearubigins formation. Food Chem 115, 8−14. https://doi.org/10.1016/j.foodchem.2008.10.006
  41. Owuor PO, Obanda M, Nyirenda HE, Mphangwe NIK, Wright LP, and Apostolides Z (2006) The relationship between some chemical parameters and sensory evaluations for plain black tea (Camellia sinensis) produced in Kenya and comparison with similar teas from Malawi and South Africa. Food Chem 97, 644−53. https://doi.org/10.1016/j.foodchem.2005.04.027
  42. Park GY, Lee SJ, and Lim JG (1997) Effects of green tea catechin on cytochrome p450, xanthine oxidase activities in liver and liver damage in streptozotocin induced diabetic rats. J Korean Soc Food Sci Nutr 26, 901−7.
  43. Parks DA and Granger DN (1986) Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol Scand Suppl 548, 87−99.
  44. Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, and Tran TD (2010) Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem 53, 8441−60. https://doi.org/10.1021/jm100888d
  45. Rajagopalan KV, Fridovich I, and Handler P (1962) Hepatic aldehyde oxidase. I. Purification and properties. J Biol Chem 237, 922−8.
  46. Rashidi MR, Beedham C, Smith JS, and Davaran S (2007) In vitro study of 6-mercaptopurine oxidation catalysed by aldehyde oxidase and xanthine oxidase. Drug Metab Pharmacok 22, 299−306. https://doi.org/10.2133/dmpk.22.299
  47. Reiter S, Simmonds HA, Zoollner N, Braun SL, and Knedel M (1990) Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming oxipurinol. Clin Chim Acta 187, 221−34. https://doi.org/10.1016/0009-8981(90)90107-4
  48. Roy R and McCord JM (1982) Ischemia-induced conversion of xanthine dehydrogenase to xanthine oxidase. Fed Proc 41, 767−73.
  49. Sahinoglu T, Stevens CR, Bhatt B, and Blake DR (1996) The Role of Reactive Oxygen Species in Inflammatory Disease: Evaluation of Methodology. Methods 9, 628−34. https://doi.org/10.1006/meth.1996.0069
  50. Shaw S and Jayatilleke E (1990) The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem J 268, 579−83. https://doi.org/10.1042/bj2680579
  51. Shu XS, Gao ZH, and Yang XL (2006) Anti-inflammatory and antinociceptive activities of Smilax china L. aqueous extract. J Ethnopharm 103, 327−32. https://doi.org/10.1016/j.jep.2005.08.004
  52. Song HS, Park YH, Jung SH, Kim DP, Jung YH, Lee MK et al. (2006) Antioxidant activity of extracts from Smilax china root. J Korean Soc Food Sci Nutr 35, 1133−8. https://doi.org/10.3746/jkfn.2006.35.9.1133
  53. Stirpe F and Della Corte E (1969) The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 244, 3855−63.
  54. Torel J, Gillard J, and Gillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem 25, 383−5. https://doi.org/10.1016/S0031-9422(00)85485-0
  55. Weigert J, Neumeier M, Bauer S, Mages W, Schnitzbauer AA, Obed A et al. (2008) Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett 582, 2965−72. https://doi.org/10.1016/j.febslet.2008.07.034
  56. Wright RM and Repine JE (1997) The human molybdenum hydroxylase gene family: co-conspirators in metabolic free-radical generation and disease. Biochem Soc Trans 25, 799−804. https://doi.org/10.1042/bst0250799
  57. Wright RM, McManaman JL, and Repine JE (1999) Alcohol-induced breast cancer: a proposed mechanism. Free Rad Biol Med 26, 348−54. https://doi.org/10.1016/S0891-5849(98)00204-4
  58. Yee SB and Pritsos CA (1997) Comparison of oxygen radical generation from the reductive activation of doxorubicin, streptonigrin, and menadione by xanthine oxidase and xanthine dehydrogenase. Arch Biochem Biophys 347, 235−41. https://doi.org/10.1006/abbi.1997.0340
  59. Zuo YG, Chen H, and Deng YW (2002) Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57, 307−13. https://doi.org/10.1016/S0039-9140(02)00030-9

Cited by

  1. Antioxidant Activity and Quality Characteristics of Stew Sauce Mixed with Smilax china L. Extract During Storage vol.26, pp.3, 2015, https://doi.org/10.7856/kjcls.2015.26.3.489
  2. Comparison of Antioxidant Activities of Water Extract from Dandelion (Taraxacum officinale) Aerial Parts, Roots, and Their Mixtures vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1157
  3. 토복령 추출물 첨가로 인한 돼지갈비 소스의 품질 특성 vol.9, pp.12, 2019, https://doi.org/10.22156/cs4smb.2019.9.12.166