DOI QR코드

DOI QR Code

Vision-based remote 6-DOF structural displacement monitoring system using a unique marker

  • Jeon, Haemin (Department of Civil and Environmental Engineering, KAIST) ;
  • Kim, Youngjae (Robotics Program, KAIST) ;
  • Lee, Donghwa (Department of Civil and Environmental Engineering, KAIST) ;
  • Myung, Hyun (Department of Civil and Environmental Engineering, KAIST)
  • 투고 : 2013.11.20
  • 심사 : 2014.04.15
  • 발행 : 2014.06.25

초록

Structural displacement is an important indicator for assessing structural safety. For structural displacement monitoring, vision-based displacement measurement systems have been widely developed; however, most systems estimate only 1 or 2-DOF translational displacement. To monitor the 6-DOF structural displacement with high accuracy, a vision-based displacement measurement system with a uniquely designed marker is proposed in this paper. The system is composed of a uniquely designed marker and a camera with a zooming capability, and relative translational and rotational displacement between the marker and the camera is estimated by finding a homography transformation. The novel marker is designed to make the system robust to measurement noise based on a sensitivity analysis of the conventional marker and it has been verified through Monte Carlo simulation results. The performance of the displacement estimation has been verified through two kinds of experimental tests; using a shaking table and a motorized stage. The results show that the system estimates the structural 6-DOF displacement, especially the translational displacement in Z-axis, with high accuracy in real time and is robust to measurement noise.

키워드

참고문헌

  1. Balageas, D., Fritzen, C.P. and Guemes, A. (Eds.) (2006), Structural health monitoring, New Jersey: John Wiley & Sons, Inc.
  2. Graphics and media lab. (2013), http://graphics.cs.msu.ru/en/node/909.
  3. Hartley, R.I. and Zisserman, A. (2004), Multiple view geometry in computer vision, Cambridge University Press.
  4. Jeon, H., Bang, Y. and Myung, H. (2011), "A paired visual servoing system for 6-DOF displacement measurement of structures", Smart Mater. Struct., 20(4), 045019. https://doi.org/10.1088/0964-1726/20/4/045019
  5. Jeon, H., Shin, J.U. and Myung, H. (2012), "Incremental displacement estimation of structures using paired structured light", Smart Struct. Syst., 9(3), 273-286. https://doi.org/10.12989/sss.2012.9.3.273
  6. Jeon, H., Shin, J.U. and Myung, H. (2013a), "The displacement estimation error back-propagation (DEEP) method for a multiple structural displacement monitoring system", Meas. Sci. Technol., 24(4), 045104. https://doi.org/10.1088/0957-0233/24/4/045104
  7. Jeon, H., Myeong, W., Shin, J.U., Park, J.W., Jung H.J. and Myung, H. (2013b), "Experimental validation of ViSP (Visually Servoed Paired Structured Light System) for structural displacement monitoring", IEEE/ASME Trans. Mech., DOI:10.1109/TMECH.2013.2290020.
  8. Ji, Y.F. and Chang, C.C. (2008), "Nontarget stereo vision technique for spatiotemporal response measurement of line-like structures", J. Eng. Mech. - ASCE, 134(6), 466-474. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(466)
  9. Lee, D., Jeon, H., and Myung, H. (2012), "Vision-based 6-DOF displacement measurement of structures with a planar marker", Proceedings of the SPIE, San Diego.
  10. Lee, H.S., Hong, Y.H. and Park, H.W. (2010), "Design of an FIR filter for the displacement reconstruction using measured acceleration in low frequency dominant structures", Int. J. Numer. Meth. Eng., 82(4), 403-434.
  11. Lee, J.J. and Shinozuka, M. (2006), "Real-time displacement measurement of a flexible bridge using digital image processing techniques", Exp. Mech., 46(1), 105-114. https://doi.org/10.1007/s11340-006-6124-2
  12. Leith, J.G., Thompson, A. and Sloan, T.D. (1989), "A novel dynamic deflection measurement system for large structure", Proceedings of the 4th Int. Conf. on Civil and Structural Engineering Computing, London.
  13. Marecos, J., Castanheira, M. and Trigo, J. (1969), "Field observation of Tagus river suspension bridge", J. Struct. Div. - ASCE, 95(4), 555-583.
  14. Meng, X., Roberts, G.W., Dodson, A.H., Cosser, E., Barnes, J. and Rizos, C. (2004), "Impact of GPS satellite and pseudolite geometry on structural displacement monitoring: analytical and empirical studies", J. Geodesy, 77(12), 809-822. https://doi.org/10.1007/s00190-003-0357-y
  15. Myung, H., Lee, S.M. and Lee, B.J. (2011), "Paired structured light for structural health monitoring robot system", Struct. Health Monit., 10(1), 49-64. https://doi.org/10.1177/1475921710365413
  16. Nassif, H.H., Gindy, M. and Davis, J. (2005). "Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration", NDT & E Int., 38(3), 213-218. https://doi.org/10.1016/j.ndteint.2004.06.012
  17. Ni, Y.Q., Wong, K.Y. and Xia, Y. (2011), "Health checks through land mark bridges to sky-high structures", Adv. Struct. Eng., 14(1), 103-119. https://doi.org/10.1260/1369-4332.14.1.103
  18. Olaszek, P. (1999), "Investigation of the dynamic characteristic of bridge structures using a computer vision method", Measurement, 25(3), 227-236. https://doi.org/10.1016/S0263-2241(99)00006-8
  19. Optex-FA (2007), Sensor head instruction manual of displacement sensor CD4 series, http://www.optex-ramco.com/pdffiles/
  20. Park, J.W., Lee, J.J., Jung, H.J. and Myung, H. (2010), "Vision-based displacement measurement method for high-rise building structures using partitioning approach", NDT & E Int., 43(7), 642-647. https://doi.org/10.1016/j.ndteint.2010.06.009
  21. Park, J.W., Sim, S.H., Jung, H.J. and Spencer, B.F. (2013), "Development of a wireless displacement measurement system using acceleration reponses", Sensors, 13(7), 8377-8392. https://doi.org/10.3390/s130708377
  22. Psimoulis, P.A. and Stiros, S.C. (2008), "Experimental assessment of the accuracy of GPS and RTS for Determination of the parameters of oscillation of major structures", Comput. Aided Civil Infrastruct. Eng., 23(5), 389-403. https://doi.org/10.1111/j.1467-8667.2008.00547.x
  23. Rice, J. A., Mechitov, K., Sim, S.H., Nagayama , T., Jang, S., Kim, R., Spencer, B. F., Agha, G. and Fujino , T. (2010), "Flexible smart sensor framework for autonomous structural health monitoring", Smart Struct. Syst., 6(5-6), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
  24. Stephen, G.A., Brownjohn, J.M.W. and Taylor, C.A. (1993), "Measurements of static and dynamic displacement from visual monitoring of the Humber bridge", Eng. Struct., 15(3), 197-208. https://doi.org/10.1016/0141-0296(93)90054-8
  25. The Intel Co. (2013), The OpenCV online reference manual, http://docs.opencv.org
  26. Thorlabs, Inc. (2011), Thorlabs' V21 photonics catalog, http://www.thorlabs.com
  27. Wahbeh, A.M., Caffrey, J.P. and Masri, S.F. (2003), "A vision-based approach for the direct measurement of displacements in vibrating systems", Smart Mater. Struct., 12(5), 785-794. https://doi.org/10.1088/0964-1726/12/5/016

피인용 문헌

  1. One-way ViSP (Visually Servoed Paired structured light system) for structural displacement monitoring vol.26, pp.8, 2017, https://doi.org/10.1088/1361-665X/aa746f
  2. Performance evaluation method of homogeneous stereo camera system for full-field structural deformation estimation vol.16, pp.3, 2015, https://doi.org/10.5139/IJASS.2015.16.3.380
  3. Computer Vision-Based Structural Displacement Measurement Robust to Light-Induced Image Degradation for In-Service Bridges vol.17, pp.10, 2017, https://doi.org/10.3390/s17102317
  4. Multi-point displacement monitoring of bridges using a vision-based approach vol.20, pp.2, 2015, https://doi.org/10.12989/was.2015.20.2.315
  5. A Review of Machine Vision-Based Structural Health Monitoring: Methodologies and Applications vol.2016, 2016, https://doi.org/10.1155/2016/7103039
  6. Vision-based structural displacement measurement: System performance evaluation and influence factor analysis vol.88, 2016, https://doi.org/10.1016/j.measurement.2016.01.024
  7. Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.585
  8. Electromagnetic Energy Harvesting System based on Wake Galloping Using Circular Cylinders vol.28, pp.4, 2018, https://doi.org/10.5050/KSNVE.2018.28.4.381
  9. Dynamic torsional response measurement model using motion capture system vol.19, pp.6, 2017, https://doi.org/10.12989/sss.2017.19.6.679
  10. Vision-based hybrid 6-DOF displacement estimation for precast concrete member assembly vol.20, pp.4, 2014, https://doi.org/10.12989/sss.2017.20.4.397
  11. Non-Contact Measurement of the Surface Displacement of a Slope Based on a Smart Binocular Vision System vol.18, pp.9, 2014, https://doi.org/10.3390/s18092890
  12. Non-Target Structural Displacement Measurement Using Reference Frame-Based Deepflow vol.19, pp.13, 2019, https://doi.org/10.3390/s19132992
  13. Port Structure Inspection Based on 6-DOF Displacement Estimation Combined with Homography Formulation and Genetic Algorithm vol.11, pp.14, 2021, https://doi.org/10.3390/app11146470