DOI QR코드

DOI QR Code

시간 경과 신경계 영상 시퀀스에서의 축삭돌기 추출 기법

An Automated Technique for Detecting Axon Structure in Time-Lapse Neural Image Sequence

  • 김낙현 (한국외국어대학교 디지털정보공학과)
  • Kim, Nak Hyun (Department of Digital Information Engineering, Hankuk University of Foreign Studies)
  • 투고 : 2014.03.13
  • 심사 : 2014.04.16
  • 발행 : 2014.06.25

초록

신경계 영상 해석의 목적은 움직이는 미토콘드리아들을 추적하여 그 속도와 이동 방향 등을 추출하는 것인데, 미토콘드리아의 움직임은 축삭돌기 상에서만 이루어지는 특징이 있다. 축삭돌기 추출 작업은 일반적으로 수작업을 동반한 처리 과정을 통해 이루어지고 있는데, 본 논문에서는 자동화된 축삭돌기 추출 기법을 제안한다. 우선 전체 비디오 프레임 영상에서 각 픽셀의 최대값을 취해 통합영상을 구한다. 통합 영상에서 축삭돌기는 능선 구조를 보이는데, 능선을 검출하기 위해 본 연구에서는 능선 강화 필터링과 피크 검출 과정을 적용하였다. 또한 검출된 능선점에서 나타난 오류를 제거하기 위해 대해 각 능선점 주위에서 신뢰도 함수를 사용한 필터링을 적용한다. 실제 영상을 이용한 실험을 통해 제안된 방식은 높은 검출률과 정확도를 나타내는 것을 확인하였다.

The purpose of the neural image analysis is to trace the velocities and the directions of moving mitochondria migrating through axons. This paper proposes an automated technique for detecting axon structure. Previously, the detection process has been carried out using a partially automated technique combined with some human intervention. In our algorithm, a consolidated image is built by taking the maximum intensity value on the all image frames at each pixel Axon detection is performed through vessel enhancement filtering followed by a peak detection procedure. In order to remove errors contained in ridge points, a filtering process is devised using a local reliability measure. Experiments have been performed using real neural image sequences and ground truth data extracted manually. It has been turned out that the proposed algorithm results in high detection rate and precision.

키워드

참고문헌

  1. K.E. Miller and M.P. Sheetz, "Axonal mitochondrial transport and potential are correlated," Journal of Cell Science, vol. 117, pp. 2791-2804, 2004. https://doi.org/10.1242/jcs.01130
  2. A. Taylor, M. Blurton-Jones, S. Rhee, D. Cribbs, C. Cotman, and N. Jeon, "A microfluidic culture platform for CNS axonal injury, regeneration, and transport," Nature Methods, vol. 2, pp. 599-605, 2005. https://doi.org/10.1038/nmeth777
  3. J. Park, B. Vahidi, A. Taylor, S. Rhee, and N. Jeon, "Microfludic culture platform for neuroscience research," Nature Protocols, vol. 1, pp. 2128-2136. 2006. https://doi.org/10.1038/nprot.2006.316
  4. I.F. Sbalzarini and P. Koumoutsakos, "Feature point tracking and trajectory analysis for video imaging in cell biology," Journal of Structural Biology, vol. 151, pp. 182-195, 2005. https://doi.org/10.1016/j.jsb.2005.06.002
  5. Y. Kalaidzidis, "Intracellular objects tracking," European Journal of Cell Biology, vol. 86, pp. 569-578, 2007. https://doi.org/10.1016/j.ejcb.2007.05.005
  6. K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S.L. Schmid, and G. Danuser, "Robust single particle tracking in live cell time-lapse sequences," Nature Methods, vol. 5, pp. 695-702, 2008. https://doi.org/10.1038/nmeth.1237
  7. I. Smal, K. Draegestein, N. Galjart, W. Niessen, and E. Meijering, "Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis," IEEE Transactions on Medical Imaging, vol. 27, pp. 789-804, 2008. https://doi.org/10.1109/TMI.2008.916964
  8. H.J. Kim, J.W. Park, J.H. Byun, W.W. Poon, C.W. Cotman, C.C. Fowlkes, and N.L. Jeon, "Quantitative analysis of axonal transport by using compartmentalized and surface micropatterned culture of neurons," ACS Chemistry on Neuroscience, 2012.
  9. S. Hong, H. Shim, and Y. Chung, "Tracking of mitochondrial transports using a particle filtering method with a spatial constraint," Optical Engineering, vol. 50, 2011.
  10. E. Meijering, M. Jacob, J.-C.F. Sarria, P. Steiner, H. Hirling, and M. Unser, "Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images," Cytometry Part A, vol. 58A, pp. 167-176, 2004. https://doi.org/10.1002/cyto.a.20022
  11. A. Mukherjee, B. Jenkins, C. Fang, R.J. Radke, G. Banker, and B. Roysam, "Automated kymograph analysis for profiling axonal transport of secretory granules," Medical Image Analysis, vol. 15, pp. 354-367, 2011. https://doi.org/10.1016/j.media.2010.12.005
  12. S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, "Detection of blood vessels in retinal images using two-dimensional matched filters," IEEE Transactions on Medical Imaging, vol.8, pp. 263-269, 1989. https://doi.org/10.1109/42.34715
  13. A. Can et al., "Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms," IEEE Transactions on Information Technology in Biomedicine, vol. 3, pp. 125-138, 1999. https://doi.org/10.1109/4233.767088
  14. H. Hwang and J. Oh, "Evolutionary design of morphology-based homomorphic filter for feature enhancement of medical images," International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, pp. 172-177, 2009. https://doi.org/10.5391/IJFIS.2009.9.3.172
  15. H. Hwang, "Morphology-based homomorphic filter for contrast enhancement of mammographic image," Journal of Korean Institute of Intelligent Systems, vol. 20, pp. 522-527, 2010. https://doi.org/10.5391/JKIIS.2010.20.4.522
  16. F. Miles and A. Nutall, "Matched filter estimation of serial blood vessel diameters from video images," IEEE Transactions on Medical Imaging, vol. 12, pp. 147-152, 1993. https://doi.org/10.1109/42.232243
  17. A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever, "Multiscale vessel enhancement filtering," Lecture Notes in Computer Science, vol. 1496, pp. 130-137, 1998.
  18. C. Steger, "An unbiased detector of curvilinear structures," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 113-125, 1998. https://doi.org/10.1109/34.659930
  19. D.A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2003.