DOI QR코드

DOI QR Code

Selection of Insecticide Resistance Markers in Field-collected Populations of Myzus persicae

복숭아혹진딧물 야외개체군의 살충제 저항성 마커 선발

  • 김주일 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 권민 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 심재동 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 김점순 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 이영규 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 지삼녀 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 이정태 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 류종수 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 유동림 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 이계준 (농촌진흥청 국립식량과학원 고령지농업연구센터)
  • Received : 2014.01.08
  • Accepted : 2014.04.03
  • Published : 2014.06.01

Abstract

The resistance levels of the green peach aphid, Myzus persicae (Sulzer), against 10 insecticides was checked and selected the applicable insecticide resistance markers. We conducted our study in 5 cabbage cultivation regions (Pyeongchang, Hongcheon, Bongwha, Muju, and Jeju) of Korea, over 3 successive years (2009-2011). We selected a multi-resistant (MR) strain from among the 5 field-collected populations. We analyzed esterase over-expression and mutation(s) in the target sites, by using native isoelectric focusing (IEF) and quantitative sequencing (QS). We detected esterase over-expression and StoF mutation in the acetylcholinesterase 1 gene (ace1) in all of the field-collected populations, including the MR strain. We did not detect the LtoF mutation, which is a well-known knockdown resistance (kdr) mutation in the para-type sodium channel gene (para), in the MR strain; however, the value of the MR strain for bifenthrin was 3,461-fold higher than that of the susceptible strain. Our results indicate that insecticide resistance is more effectively evaluated using molecular markers than by conducting a bioassay. The molecular markers StoF in ace1 and MtoL in para can easily be applied in diagnostic methods such as QS or PCR amplification of specific alleles (PASA). These methods may be extended to management of M. persicae resistance in the field.

2009~2011년 동안 국내 주요 배추 재배지 5개 지역(평창, 홍천, 봉화, 무주, 제주)에서 살충제에 대한 복숭아혹진딧물의 저항성 발달 정도를 조사하고, 야외 개체군에 적용 가능한 살충제 저항성 마커를 개발하기 위해 본 연구를 수행하였다. 조사된 5개 지역 개체군 모두 여러 살충제 종류에 대하여 다양한 저항성을 보였다. 다양한 저항성을 보인 5개 지역 야외 개체군으로부터 여라 살충제에 대하여 복합적으로 저항성을 보이는 복합저항성 계통(MR)을 선발하였고, 이 MR과 모든 지역 채집 개체군에 대해 등전점전기영동과 정량염기서열분석(quantitative sequencing, QS)을 통하여 에스터레이즈 과발현과 살충제 작용점 내 돌연변이를 확인하였다. MR을 포함한 모든 야외 개체군에서 에스터레이즈의 과발현과 아세틸콜린에스터레이즈 1 유전자(ace1)의 StoF 돌연변이를 확인할 수 있었다. 넉다운 저항성 돌연변이로 잘 알려진 파라 타입 나트륨 채널 유전자(para)의 LtoF 돌연변이는 모든 지역 채집 개체군은 물론 비펜스린에 대해 3,461배 저항성을 보이는 MR에서도 발견되지 않았다. 그 외에 MtoL 돌연변이를 발견하였는데, 생물검정 결과 저항성 수준과 돌연변이 발생 빈도가 일치하였다. 따라서 생물검정 대신, 이러한 분자 마커를 활용 한다면 더 효율적으로 살충제 저항성 평가가 가능할 것이다. 이러한 분자 마커들(ace1의 StoF, para의 MtoL)은 정량염기서열분석, PCR amplification of specific alleles (PASA) 등의 진단 방법에 쉽게 응용이 가능 하고, 이러한 방법은 야외 복숭아혹진딧물 저항성 관리에 적용이 가능 할 것이다.

Keywords

References

  1. Ahn, Y.J., K.H. Kim, Choi, S.Y., 1989. Joint toxic action of insecticide mixtures to the cypermethrin and pirimicarb selected strains of green peach aphid (Myzus persicae Sulzer). Kor. J. Appl. Entomol. 28, 32-36.
  2. Aketarawong, N., Chinvinijkul, S., Orankanok, W., Guglielmino, C. R., Franz, G., Malacrida, A. R., Thanaphum, S., 2011. The utility of microsatellite DNA markers for the evaluation of area-wide integrated pest management using SIT for the fruit fly, Bactrocera dorsalis (Hendel), control programs in Thailand. Genetica 139, 129-40. https://doi.org/10.1007/s10709-010-9510-8
  3. Anstead, J.A., Williamson, M.S., Eleftherianos, I., Denholm, I., 2004. Highthroughput detection of knockdown resistance in Myzus persicae using allelic discriminating quantitative PCR. Insect Biochem. Mol. Biol. 34, 871-877. https://doi.org/10.1016/j.ibmb.2004.06.002
  4. Barron, K. D., Bernsohn, J., 1968. Esterases of developing human brain. J. Neurochem. 15, 273-284. https://doi.org/10.1111/j.1471-4159.1968.tb11611.x
  5. Bass, C., Carvalho, R. A., Oliphant, L., Puinean, A. M., Field, L. M., Nauen, R., Williamson, M. S., Moores, G., Gorman, K., 2011a. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 20, 763-73. https://doi.org/10.1111/j.1365-2583.2011.01105.x
  6. Bass, C., Puinean, A. M., Andrews, M., Cutler, P., Daniels, M., Elias, J., Paul, V. L., Crossthwaite, A. J., Denholm, I., Field, L. M., Foster, S. P., Lind, R., Williamson, M. S., Slater, R., 2011b. Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci. 12, 51. https://doi.org/10.1186/1471-2202-12-51
  7. Bradford M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  8. Cassanelli, S., Cerchiari, B., Giannini, S., Bizzaro, D., Mazzoni, E., Manicardi, G.C., 2005. Use of the RFLP-PCR diagnostic test for characterizing MACE and KDR insecticide resistance in the peach potato aphid Myzus persicae. Pest Manag. Sci. 61, 91-96. https://doi.org/10.1002/ps.954
  9. Choi, B.Y., Lee, S.W., Lyu., J.K., 2001. Resistance Mechanisms of Green Peach Aphid, Myzus persicae (Homoptera: Aphididae), to Imidacloprid. Kor. J. Appl. Entomol. 40, 265-271.
  10. Choi, S.W. Kim, G.H., 1986. Studies on the resistance of green peach aphids to insecticides (II)-local differences in susceptibility. Kor. J. Appl. Entomol. 25, 151-157.
  11. Choi, S.W., Kim, G.H. and Ahn, Y.J., 1989. Studies of the insecticide resistance in the green peach aphid, Myzus persicae Sulzer (V). development of cypermethrin and pirimicarb resistance, and cross resistance. Kor. J. Appl. Entomol. 28, 23-27.
  12. Clark, J. M., Lee, S. H., Kim, H. J., Yoon, K. S., Zhang, A., 2001. DNA-based genotyping techniques for the detection of point mutations associated with insecticide resistance in Colorado potato beetle Leptinotarsa decemlineata. Pest Manag. Sci. 57, 968-974. https://doi.org/10.1002/ps.369
  13. Devonshire, A.L., Field, L. M., Foster, S. P., Moores, G.D., Williamson, M.S., Blackman., R.L., 1998. The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Philos. Trans R. Soc. Lond B. Biol. Sci. 353, 1677-1684. https://doi.org/10.1098/rstb.1998.0318
  14. Field, L. M., Devonshire, A. L., Tyler-Smith, C., 1996. Analysis of amplicons containing the esterase genes responsible for insecticide resistance in the peach-potato aphid Myzus persicae (Sulzer). Biochem. J. 313 ( Pt 2), 543-547.
  15. Field, L.M., Devonshire, A. L., 1998. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem. J. 330, 169-173.
  16. Field, L. M., Blackman, R. L., Tyler-Smith, C., and Devonshire, A. L., 1999. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem. J. 339 ( Pt 3), 737-742. https://doi.org/10.1042/0264-6021:3390737
  17. Field, L.M., Foster, S.P., 2002. Amplified esterase genes and their relationship with other insecticide resistance mechanisms in English field populations of the aphid, Myzus persicae (Sulzer). Pest Manag. Sci. 58, 889-894. https://doi.org/10.1002/ps.552
  18. Fontaine, S., Caddoux, L., Brazier, C., Bertho, C., Bertolla, P., Micoud, A., Roy, L., 2011. Uncommon associations in target resistance among French populations of Myzus persicae from oilseed rape crops. Pest Manag. Sci. 67, 881-885. https://doi.org/10.1002/ps.2224
  19. Foster, S.P., Cox, D., Oliphant, L., Mitchinson, S., Denholm, I., 2008. Correlated responses to neonicotinoid insecticides in clones of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae). Pest Manag Sci. 64:1111-1114. https://doi.org/10.1002/ps.1648
  20. Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., Morin, S., 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. Biol. 38, 634-644. https://doi.org/10.1016/j.ibmb.2008.03.008
  21. Kim, H. W., Baek, J. H., Lee, W. J., and Lee, S. H., 2007. Frequency detection of pyrethroid resistance allele in Anopheles sinensis populations by real-time PCR amplification of specific allele (rtPASA). Pest. Biochem. Physiol. 87, 54-61. https://doi.org/10.1016/j.pestbp.2006.06.009
  22. Kim, J. I., Joo, Y. R., Kwon, M., Kim, G. H., and Lee, S. H., 2012. Mutation in ace1 associated with an insecticide resistant population of Plutella xylostella. J. Asia-Pac. Entomol. 15, 401-407. https://doi.org/10.1016/j.aspen.2012.02.008
  23. Kim, J. I., Kwon, M., 2011. Development of Variation Marker of Myzus persicae by Altitude. Kor. J. Appl. Entomol. 50, 325-333. https://doi.org/10.5656/KSAE.2011.50.4.325
  24. Kwon, D. H., Clark, J. M., Lee, S. H., 2004. Estimation of knockdown resistance in diamondback moth using real-time PASA. Pest. Biochem. Physiol. 78, 39-48. https://doi.org/10.1016/j.pestbp.2003.09.005
  25. Lee, J.Y., Paik, W.H., 1977. Studies on the aphid transmission of some cruciferous viruses. Kor. J. Pl. Prot. 16, 93-100.
  26. Nauen, R., Jeschke, P., Copping, L., 2008. In Focus: neonicotinoid insecticides. Pest Manag. Sci. 64, 1081. https://doi.org/10.1002/ps.1659
  27. Puinean, A.M., Foster, S.P., Oliphant, L., Denholm, I., Field, L.M., Millar, N.S., Williamson, M.S., Bass, C., 2010. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet. 6, e1000999. https://doi.org/10.1371/journal.pgen.1000999
  28. Shim, J.Y., Park, J.S., Paik, W.H., Lee, Y.B., 1977. Studies on the life history of green peach aphid, Myzus persicae (Homoptera). Kor. J. Pl. Prot. 16, 139-144.
  29. Yang, X., Williamson, M.S., 2001. A new super-kdr mutation is associated with resistance to pyrethroid insecticides in cotton aphid, Aphis gossypii. GenBank accession no. AF412815, NIH genetic sequence database at NCBI

Cited by

  1. Presence and impact of allelic variations of two alternatives-kdrmutations, M918T and M918L, in the voltage-gated sodium channel of the green peach aphidMyzus persicae vol.71, pp.6, 2015, https://doi.org/10.1002/ps.3927