DOI QR코드

DOI QR Code

Biofilm Formation and Antibiotic Resistance in Salmonella Typhimurium Are Affected by Different Ribonucleases

  • Received : 2013.09.23
  • Accepted : 2013.10.11
  • Published : 2014.01.28

Abstract

Biofilm formation and antibiotic resistance are important determinants for bacterial pathogenicity. Ribonucleases control RNA degradation and there is increasing evidence that they have an important role in virulence mechanisms. In this report, we show that ribonucleases affect susceptibility against ribosome-targeting antibiotics and biofilm formation in Salmonella.

Keywords

References

  1. Allas U, Liiv A, Remme J. 2003. Functional interaction between RNase III and the Escherichia coli ribosome. BMC Mol. Biol. 4: 8. https://doi.org/10.1186/1471-2199-4-8
  2. Andrews JM. 2001. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48(Suppl 1): 5-16. https://doi.org/10.1093/jac/48.suppl_1.5
  3. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, et al. 2010. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol. Rev. 34: 883-923. https://doi.org/10.1111/j.1574-6976.2010.00242.x
  4. Arraiano CM, Mauxion F, Viegas SC, Matos RG, Seraphin B. 2013. Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. Biochim. Biophys. Acta 1829: 491-513. https://doi.org/10.1016/j.bbagrm.2013.03.009
  5. Bilgin N, Richter AA, Ehrenberg M, Dahlberg AE, Kurland CG. 1990. Ribosomal RNA and protein mutants resistant to spectinomycin. EMBO J. 9: 735-739.
  6. Carzaniga T, Antoniani D, Deho G, Briani F, Landini P. 2012. The RNA processing enzyme polynucleotide phosphorylase negatively controls biofilm formation by repressing poly-Nacetylglucosamine (pNAG) production in Escherichia coli C. BMC Microbiol. 12: 270. https://doi.org/10.1186/1471-2180-12-270
  7. Cheng ZF, Deutscher MP. 2003. Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R. Proc. Natl. Acad. Sci. USA 100: 6388-6393. https://doi.org/10.1073/pnas.1231041100
  8. de la Cruz J, Vioque A. 2001. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA. RNA 7: 1708-1716.
  9. Domingues S, Matos RG, Reis FP, Fialho AM, Barbas A, Arraiano CM. 2009. Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella T yph miurium a nd Streptococcus pneumoniae. Biochemistry 48: 11848-11857. https://doi.org/10.1021/bi901105n
  10. Eidem TM, Roux CM, Dunman PM. 2012. RNA decay: a novel therapeutic target in bacteria. Wiley Interdiscip. Rev. RNA 3: 443-454.
  11. Frazier AD, Champney WS. 2012. Impairment of ribosomal subunit synthesis in aminoglycoside-treated ribonuclease mutants of Escherichia coli. Arch. Microbiol. 194: 1033-1041. https://doi.org/10.1007/s00203-012-0839-5
  12. Ghora BK, Apirion D. 1978. Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell 15: 1055-1066. https://doi.org/10.1016/0092-8674(78)90289-1
  13. Gualdi L, Tagliabue L, Bertagnoli S, Ierano T, De Castro C, Landini P. 2008. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154: 2017-2024. https://doi.org/10.1099/mic.0.2008/018093-0
  14. Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, et al. 2009. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10: 599. https://doi.org/10.1186/1471-2164-10-599
  15. Heeb S, F letch er M P, C h habra S R, D iggle SP, W illiams P , Camara M. 2011. Quinolones: from antibiotics to autoinducers. FEMS Microbiol. Rev. 35: 247-274. https://doi.org/10.1111/j.1574-6976.2010.00247.x
  16. Hoiseth SK, Stocker BA. 1981. Aromatic-dependent Salmonella Typhimurium are non-virulent and effective as live vaccines. Nature 291: 238-239. https://doi.org/10.1038/291238a0
  17. Jorgensen MG, Nielsen JS, Boysen A, Franch T, Moller- Jensen J, Valentin-Hansen P. 2012. Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. Mol. Microbiol. 84: 36-50. https://doi.org/10.1111/j.1365-2958.2012.07976.x
  18. Kint G, De Coster D, Marchal K, Vanderleyden J, De Keersmaecker SC. 2010. The small regulatory RNA molecule MicA is involved in Salmonella enterica s erovar T yph imurium biofilm formation. BMC Microbiol. 10: 276. https://doi.org/10.1186/1471-2180-10-276
  19. Lawal A, Jejelowo O, Chopra AK, Rosenzweig JA. 2011. Ribonucleases and bacterial virulence. Microb. Biotechnol. 4: 558-571. https://doi.org/10.1111/j.1751-7915.2010.00212.x
  20. Luidalepp H, Hallier M, Felden B, Tenson T. 2005. tmRNA decreases the bactericidal activity of aminoglycosides and the susceptibility to inhibitors of cell wall synthesis. RNA Biol. 2: 70-74. https://doi.org/10.4161/rna.2.2.2020
  21. Magnet S, Blanchard JS. 2005. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105: 477-498. https://doi.org/10.1021/cr0301088
  22. Mah TF, O'Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9: 34-39. https://doi.org/10.1016/S0966-842X(00)01913-2
  23. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. 2010. T h e global b urden of n ontyph oidal Salmonella gastroenteritis. Clin. Infect. Dis. 50: 882-889. https://doi.org/10.1086/650733
  24. Merritt JH, Kadouri DE, O'Toole GA. 2005. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. Chapter 1: Unit 1B 1.
  25. Misra TK, Apirion D. 1979. RNase E, an RNA processing enzyme from Escherichia coli. J. Biol. Chem. 254: 11154-11159.
  26. Noah JW, Dolan MA, Babin P, Wollenzien P. 1999. Effects of tetracycline and spectinomycin on the tertiary structure of ribosomal RNA in the Escherichia coli 30S ribosomal subunit. J. Biol. Chem. 274: 16576-16581. https://doi.org/10.1074/jbc.274.23.16576
  27. Richards J, Mehta P, Karzai AW. 2006. RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol. Microbiol. 62: 1700-1712. https://doi.org/10.1111/j.1365-2958.2006.05472.x
  28. Romling U. 2005. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol. Life Sci. 62: 1234-1246. https://doi.org/10.1007/s00018-005-4557-x
  29. Romling U, Bian Z, Hammar M, Sierralta WD, Normark S. 1998. Curli fibers are highly conserved between Salmonella Typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180: 722-731.
  30. Rouf SF, Ahmad I, Anwar N, Vodnala SK, Kader A, Romling U, Rhen M. 2011. Opposing contributions of polynucleotide phosphorylase and the membrane protein NlpI to biofilm formation by Salmonella enterica serovar Typhimurium. J. Bacteriol. 193: 580-582. https://doi.org/10.1128/JB.00905-10
  31. Siibak T, Peil L, Xiong L, Mankin A, Remme J, Tenson T. 2009. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Antimicrob. Agents Chemother. 53: 563-571. https://doi.org/10.1128/AAC.00870-08
  32. Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM. 2011. Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdiscip. Rev. RNA 2: 818-836. https://doi.org/10.1002/wrna.94
  33. Sim SH, Yeom JH, Shin C, Song WS, Shin E, Kim HM, et al. 2010. Escherichia coli ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of bdm mRNA in biofilm formation. Mol. Microbiol. 75: 413-425. https://doi.org/10.1111/j.1365-2958.2009.06986.x
  34. Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. 2002. Genetic analysis of Salmonella Enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43: 793-808. https://doi.org/10.1046/j.1365-2958.2002.02802.x
  35. Stewart PS. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292: 107-113. https://doi.org/10.1078/1438-4221-00196
  36. Usary J, Champney WS. 2001. Erythromycin inhibition of 50S ribosomal subunit formation in Escherichia coli cells. Mol. Microbiol. 40: 951-962. https://doi.org/10.1046/j.1365-2958.2001.02438.x
  37. Viegas SC, Arraiano CM. 2008. Regulating the regulators: how ribonucleases dictate the rules in the control of small non-coding RNAs. RNA Biol. 5: 230-243. https://doi.org/10.4161/rna.6915
  38. Viegas SC, Mil-Homens D, Fialho AM, Arraiano CM. 2013. The virulence of Salmonella Typhimurium in the insect model Galleria mellonella is impaired by mutations in endoribonucleases E and III. Appl. Environ. Microbiol. 79: 6124-6133. https://doi.org/10.1128/AEM.02044-13
  39. Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM. 2007. Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res. 35: 7651- 7664. https://doi.org/10.1093/nar/gkm916
  40. Viegas SC, Silva IJ, Saramago M, Domingues S, Arraiano CM. 2011. Regulation of the small regulatory RNA MicA by ribonuclease III: a target-dependent pathway. Nucleic Acids Res. 39: 2918-2930. https://doi.org/10.1093/nar/gkq1239
  41. Vioque A, de la Cruz J. 2003. Trans-translation and protein synthesis inhibitors. FEMS Microbiol. Lett. 218: 9-14. https://doi.org/10.1111/j.1574-6968.2003.tb11491.x
  42. Wang RF, Kushner SR. 1991. Construction of versatile lowcopy- number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 195-199. https://doi.org/10.1016/0378-1119(91)90366-J
  43. Wei Q, Tarighi S, Dotsch A, Haussler S, Musken M, Wright VJ, et al. 2011. Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV) of Pseudomonas aeruginosa. PLoS One 6: e29276. https://doi.org/10.1371/journal.pone.0029276
  44. Zakikhany K, Harrington CR, Nimtz M, Hinton JC, Romling U. 2010. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 77: 771-786. https://doi.org/10.1111/j.1365-2958.2010.07247.x

Cited by

  1. The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response vol.6, pp.None, 2014, https://doi.org/10.3389/fmicb.2015.01068
  2. Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli vol.16, pp.1, 2014, https://doi.org/10.1186/s12864-015-1237-6
  3. The Role of Ribonucleases and sRNAs in the Virulence of Foodborne Pathogens vol.8, pp.None, 2014, https://doi.org/10.3389/fmicb.2017.00910
  4. Sinorhizobium meliloti RNase III: Catalytic Features and Impact on Symbiosis vol.9, pp.None, 2014, https://doi.org/10.3389/fgene.2018.00350
  5. Identification of temperature‐sensitive mutations and characterization of thermolabile RN ase II variants vol.593, pp.3, 2019, https://doi.org/10.1002/1873-3468.13313
  6. Ribonucleases control distinct traits of Pseudomonas putida lifestyle vol.23, pp.1, 2021, https://doi.org/10.1111/1462-2920.15291
  7. The Two Weapons against Bacterial Biofilms: Detection and Treatment vol.10, pp.12, 2014, https://doi.org/10.3390/antibiotics10121482