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Biofilm Formation and Antibiotic Resistance in Salmonella Typhimurium
Are Affected by Different Ribonucleases  
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Salmonella infections are a serious medical and veterinary

problem worldwide and there is an increasing need for

new strategies for prevention and control [23]. In this study,

we wanted to combine our knowledge on ribonucleases

(RNases) with the evidence that changes in RNA metabolism

can affect virulence. 

Ribonucleases are the enzymes that mature and degrade

transcripts, ultimately regulating RNA levels in the cell.

Endoribonucleases cleave RNA internally, while exoribonucleases

degrade the RNA molecule from one extremity. In Salmonella,

the main endoribonucleases are RNase E and RNase III [4,

32]. RNase E is an essential endoribonuclease that cleaves

single-stranded RNA. The C-terminal of RNase E includes

binding sites for other proteins, forming the degradosome,

a multiprotein complex involved in RNA degradation. RNase

III is a ubiquitous enzyme, specific for double-stranded

RNA. The main exoribonucleases in E. coli and Salmonella

are PNPase, RNase R, and RNase II, which degrade RNA

from the 3’-extremity [3, 9, 32]. RNases are key factors in

the control of important cellular processes since they

determine the final levels of every transcript. Some RNases

are up-regulated under stress situations and have been

reported to be involved in virulence processes in pathogenic

organisms (reviewed in [3, 4, 19, 32]). Development of

bacterial resistance to antimicrobial drugs is an ever-

increasing clinical problem and RNases could be potential

novel targets for therapeutic intervention [10].

We have constructed S. Typhimurium SL1344 isogenic

mutants deficient in the main ribonucleases (Table 1). These

mutants were tested against a panoply of antimicrobial

agents representatives of different antibiotic classes

(Table 2). The minimum inhibitory concentration (MIC)

was determined by the microdilution method as previously

described [2]. It is important to note that the growth

pattern of the mutant strains was very similar to that of the

wild type [38], which excludes any influence of the growth

rate in the observed MICs.  The results showed that among

the diverse classes of antibiotics tested, the susceptibility of

the RNase mutant strains was only affected by ribosome-

targeting agents (Table 2). Notably the RNase III mutant

strain (∆rnc) was more susceptible to kanamycin, spectinomycin,

tobramycin, and chloramphenicol. The first three are

broad-spectrum antibiotics that belong to the aminoglycoside

class. This class of antibiotics interferes with protein

synthesis by selectively binding to the bacterial ribosome

[21]. Chloramphenicol also inhibits protein synthesis and
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Biofilm formation and antibiotic resistance are important determinants for bacterial

pathogenicity. Ribonucleases control RNA degradation and there is increasing evidence that

they have an important role in virulence mechanisms. In this report, we show that

ribonucleases affect susceptibility against ribosome-targeting antibiotics and biofilm formation

in Salmonella.
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affects the assembly of ribosomal subunits [31]. RNase III is

involved in the primary processing of rRNA (reviewed in

[3]) and it was reported to co-purify with ribosomes [1].

Such interaction was suggested to facilitate ribosomal

biogenesis [1]. These observations provide a possible

explanation to answer why antibiotics that affect ribosome

assembly are more efficient in the absence of RNase III.

Furthermore, neomycin and paromomycin, two other

aminoglycosides, were recently reported to promote a

reduction in the 30S and 50S ribosomal subunit amounts in

an RNase III E. coli mutant [11].

The RNase R mutant also showed higher susceptibility to

spectinomycin, an antibiotic that inhibits the elongation

cycle of translation [5, 26] (Table 2). Trans-translation

releases stalled ribosomes from non-stop mRNAs, and

RNase R is known to be involved in the decay of these

defective transcripts [27]. In agreement with our results,

deficiencies in trans-translation increase susceptibility to

protein synthesis inhibitors in Salmonella [8, 20, 41].

RNase E is essential and therefore we have used a

mutant in which the protein is missing the C-terminal and

cannot form the degradosome (the allele was called rne537).

This RNase E mutant also showed a higher sensitivity to

spectinomycin. The significant contribution of RNase E and

the degradosome to the ribosome biogenesis and quality

control may be a plausible explanation [7, 12, 25].

Surprisingly, the RNase E mutant had a higher resistance

to erythromycin. Erythromycin is a macrolide that affects

Table 1. List of strains and plasmids used in this study.

Strains Relevant Markers/Genotype Source/Reference

S. Typhimurium, SL1344 StrRhisGrpsLxyl [16]

CMA-537 (rne537) SL1344 rne-537 (∆rne::CmR) [39]

CMA-539 (∆pnp) SL1344 pnp-539 (∆pnp::CmR) [39]

CMA-551 (∆rnc) SL1344 rnc-14::∆Tn10 (TcR) [40]

CMA-700 (∆rnb) SL1344 rnb (∆rnb::CmR) This study

CMA-701 (∆rnr) SL1344 rnr (∆rnr::CmR) This study

E. coli, DH5α recA1 endA1 gyrA96 thi-hsdR17 supE44 relA1 _lacZYA-argFU169 f80dLacZDM15 New England Biolabs

Plasmids Comment Source/Reference

pWSK29 Low-copy plasmid (AmpR) [42]

pSE420 IPTG-inducible plasmid (AmpR) Invitrogen

pSVA-5 (ppnp) pSE-420 expressing PNPase [39]

pSVA-7 (prnc) pWSK29 expressing RNase III [38]

pSVA-8 (prne) pSE-420 expressing RNase E [38]

pSVA-9 (prnb) pSE-420 expressing RNase II This study

pSVA-10 (prnr) pSE-420 expressing RNase R This study

Table 2. MIC ranges of antibiotics (µg/ml). 

Strains 
Aminoglycosides Phenicol Macrolide Fluoroquinolone Quinolone β-Lactam

KAN SPT TOB CHL ERY NOR OFL NAL AMP

wt 4 64 4 8 128 1 0,5 8 2

rne537 4 32 4 8 256 1 0,5 8 2

∆rnc 2 32 2 4 128 1 0,5 8 2

∆rnb 4 64 4 8 128 1 0,5 8 2

∆rnr 4 32 4 8 128 1 0,5 8 2

∆pnp 4 64 4 8 128 1 0,5 8 2

The values presented are the result from at least three independent experiments.

KAN, kanamycin; SPT, spectinomycin; TOB, tobramycin; CHL, chloramphenicol; ERY, erythromycin; NOR, norfloxacin; OFL, ofloxacin; NAL, nalidixic acid; AMP,

ampicillin.
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protein synthesis and inhibits 50S subunit formation [31, 36]

and the absence of the degradosome might somehow

contribute to stabilize one or more transcripts involved in

conferring erythromycin resistance. 

The different susceptibilities of the ribonuclease mutants

are indicative that they use different cellular targets, and

strengthen the idea that RNA degradation pathways

contain a certain degree of specificity and are not fully

equivalent.

As a response to environmental pressures, bacteria can

aggregate on abiotic and biotic surfaces, forming a biofilm.

Biofilm development and antibiotic resistance are intimately

connected, since the biofilm matrix can delay the penetration

of antimicrobial agents [15, 22, 35, 43]. Biofilm formation is

a highly regulated process that includes an array of key

regulators, including ribonucleases and small noncoding

RNAs [6, 17, 33, 38]. Ribonucleases in turn have been

shown to regulate these functional RNAs [18, 37, 39, 40].

Therefore, we have investigated whether ribonucleases affect

biofilm properties. The extracellular matrix of biofilms is

composed of curli fimbriae, cellulose plus other polysaccharides,

and proteins. We have monitored curli fimbriae and cellulose

biosynthesis by assessing the growth and morphology of

the different Salmonella strains on Congo Red Luria agar

plates, as previously described [14, 28, 29]. A PNPase

mutant had previously been reported to display a different

colony morphotype compared with the wt on these plates

[30], and was used as a control. The expression of cellulose

was also evaluated by fluorescence analysis on Calcofluor

agar plates [34].

Among the strains analyzed, the endoribonuclease mutants

showed the major differences in colony morphotype (Fig. 1).

The wild-type strain presented dark red and rough colonies

as previously reported for this strain [14]. On the other

hand, mutant ∆rnc gave rise to smooth and pale colonies

with a red circle around them (Fig. 1A). It is known that

strain SL1344 produces a low amount of cellulose [14].

However, in the Calcofluor agar plates, the ∆rnc mutant

fluoresced with even less intensity than the wt (Fig. 1B),

which might indicate that cellulose biosynthesis is compromised.

Deficiencies in the production of curli fimbriae can neither

be ruled out. Complementation with RNase III in trans

partially restored the wt morphotype. Furthermore, the

overexpressing strain also exhibited a morphotype distinct

from that of the wt, indicating that RNase III has an

important role in biofilm development. The ability to bind

Congo Red dye seems to be also compromised in the rne537

mutant (Fig. 1A), revealing that expression of the extracellular

matrix components (cellulose and/or curli fimbriae) might

also be affected. The brighter fluorescence displayed in

Calcofluor plates by the overexpressing strain (Fig. 1B)

indicates a possible role of RNase E in modulating the

amount of cellulose in the cell. Concerning exoribonucleases,

the lack of RNase II seems to raise the cellular production

of cellulose (Fig. 1B), indicating that this enzyme may also

modulate the levels of genes involved in cellulose production.

Fig. 1. Biofilm properties of different Salmonella strains on (A)

LB plates without NaCl containing Congo red or (B) LB plates

with Calcofluor. Strains are indicated on the left side of the

image. On the top, mut represents the different ribonuclease

mutant strains; mut+p is the complemented mutant and wt+p

is the overexpressing strain. (C) Effect of the lack of some

ribonucleases on biofilm development in microtiter plates in

Iso-Sensitest medium (Oxoid). The thickness of biofilms in

cultures of different strains was measured by determining

optical density at 550 nm (OD550) after staining with crystal

violet. Error bars represent standard deviations. 
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As expected, the PNPase mutant showed an altered

morphotype on Congo Red plates (Fig. 1A). CsgD, a master

activator of biofilm development [44], was reported to be

substantially reduced in the absence of PNPase in Salmonella

[30]. 

The mutant strains that showed higher deviations on

Congo Red and Calcofluor tests were further analyzed

regarding biofilm formation in polystyrene microtiter plates,

as described by Merrit et al. [24]. This assay measures the

ability of bacteria to attach to the wells of a microtiter dish

in the interface between the air and the liquid medium. All

the mutants tested showed a reduced ability to form

biofilm, but ∆rnc and ∆rnb were the mutants in which less

biofilm was formed (Fig. 1C). The deficiency of biofilm

formation observed in ∆rnb was somehow surprising when

considering the higher levels of cellulose produced by this

strain. However, it has been shown in E. coli that cellulose

overproduction negatively affects curli-mediated surface

adhesion and cell aggregation, thus acting as a negative

determinant for biofilm formation [13]. Consistent with

this, the higher cellulose produced by the RNase II mutant

could account for a decrease in adhesion and thus biofilm

formation. 

This study underlines the importance of RNases in antibiotic

susceptibility and biofilm formation, two important factors

in bacterial survival. In particular, endoribonucleases E

and III seem to affect these important functions. The

involvement of these two ribonucleases in ribosomal

biogenesis can be the basis of the higher sensitivity to

ribosome-targeting antibiotics observed in the respective

mutant strains. Mutants of these RNases are also known to

exhibit a reduced motility, and a strong variation of CsgD

mRNA levels [38], which may explain the deficiency in

biofilm production. The simultaneous contribution of

RNase III to biofilm development and antibiotic susceptibility

reinforces the view that this enzyme is an important global

regulator [4]. The evolutionary conservation of this ribonuclease

in bacteria confirms its biological importance in the cell. 

It was recently proposed that RNases could be attractive

novel therapeutic targets [10]. Further investigation on their

mode of action may be applied in the design of new

strategies to combat pathogenic bacteria.
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