DOI QR코드

DOI QR Code

DSP 기반 초소형 수중 음향통신 모뎀

DSP-Based Micro-Modem for Underwater Acoustic Communications

  • 이동수 (강릉원주대학교 전자공학과) ;
  • 이상민 (강릉원주대학교 전자공학과) ;
  • 박성준 (강릉원주대학교 전자공학과)
  • 투고 : 2013.12.13
  • 심사 : 2014.02.20
  • 발행 : 2014.03.31

초록

최근 들어 연근해와 내수면에서 수중 자원의 효과적 개발과 보존을 위해 다양한 수중 응용 시스템 발굴 및 활용의 필요성이 증대되고 있다. 이에 본 논문에서는 근거리 수중 이동통신 시스템, 수중 센서네트워크 시스템 등의 핵심 기술 중의 하나인 초소형 수중 음향통신 모뎀의 디지털 모듈을 연구한다. 고속 연산처리가 가능한 디지털 신호처리 프로세서를 탑재한 수중 모뎀의 디지털 모듈을 설계하고 제작하며, 개발된 하드웨어에 프레임 형성 기능과 채널부호 알고리듬들을 구현하고 실험함으로써 회로의 기능과 성능을 검증한다. 실험 결과에 따르면, 개발된 DSP 기반 디지털 모듈에서 전송속도 1 kbps의 길쌈부호 처리를 위해 필요로 하는 연산량이 DSP의 가용 연산 능력의 1% 이내에 불과하므로 개발된 하드웨어 플랫폼에 다양한 고효율 기저대역 알고리듬을 탑재함으로써 수중 모뎀의 성능 개선을 모색할 수 있다.

Recently, the need for various underwater application systems targeting efficient resource exploration and aquatic ecosystem monitoring is rapidly increasing in littoral sea and inland waters. In this paper, we focus on the research and development of digital module of acoustic micro modem which can be used for underwater mobile communication systems and underwater sensor network systems. Specifically, a digital module of acoustic modem embedding digital signal processor is designed and implemented. On top of the developed hardware platform, physical layer frame generation and recovery and channel coding algorithms are mounted and tested in a water tank and a pond to verify its functionality and performance. According to experimental results, less than 1 percent of total computational power is consumed in the processing of frame control and convolutional code with the data rate of 1 kbps. Thus, the performance of micro modem could be improved by loading efficient baseband algorithms into the processor while maintaining the implemented hardware.

키워드

참고문헌

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Netw., vol. 3, pp. 257-279, Mar. 2005. https://doi.org/10.1016/j.adhoc.2005.01.004
  2. J. Heidemann, W. Ye, J. Wills, A. Syed and Y. Li, "Research challenges and applications for underwater sensor networking," in Proc. IEEE Wirel. Commun. Netw. Conf. (IEEE WCNC), pp. 228-235, Las Vegas, NV, Apr. 2006.
  3. L. Vasilescu, C. Detweiler, and D. Rus, "AquaNodes: an underwater sensor network," in Proc. ACM Int. Conf. Underwater Netw. Syst. (ACM WUWNET), Montreal, Canada, Sept. 2007.
  4. http://acomms.whoi.edu
  5. http://www.tritech.co.uk
  6. H. Yan, L. Wan, S. Zhou, Z. Shi, J.-H. Cui, J. Huang, and H. Zhou, "DSP based receiver implementation for OFDM acoustic modems," Physical Commun., vol. 5, no. 1, pp. 22-32, Mar. 2012. https://doi.org/10.1016/j.phycom.2011.09.001
  7. J.-H. Jeon and S.-J. Park, "Design and implementation of an acoustic modem for small underwater devices operating at shallow water," J. IEEK, vol. 49, no. 11, pp. 110-117, Nov. 2012. https://doi.org/10.5573/ieek.2012.49.11.110
  8. G.-J. Kim and S.-J. Park, "A wireless remotely operated vehicle using acoustic communication," J. Marine Technol. Soc., vol. 46, no. 3, pp. 44-49, May/June 2012. https://doi.org/10.4031/MTSJ.46.3.3
  9. J.-H. Jeon, N.-Y. Yun, H. Nam, C.-G. Hong, S.-J. Park, S.-H. Park, S. An, C.-H. Kim, G.-H. Yang, and Y.-S. Ryuh, "A moving underwater communication system with bio-inspired fish robots," in Proc. ACM Int. Conf. Underwater Netw. and Syst. (ACM WUWNET), Los Angeles, CA, Nov. 2012.