참고문헌
- G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), no. 5, 1286-1303. https://doi.org/10.1016/0021-8928(60)90107-6
- Y. Cao, J. Yin, and C.Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations 246 (2009), no. 12, 4568-4590. https://doi.org/10.1016/j.jde.2009.03.021
- R. W. Carroll and R. E. Showalter, Singular and degenerate Cauchy problems, Mathematics in Sciences and Engineering 127, Academic Press, New York, 1976.
- P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew Math. Phys. 19 (1968), no. 4, 614-627. https://doi.org/10.1007/BF01594969
- Y. Chen and L. Li, Lp error estimates of two-grid schemes of expanded mixed finite element methods, Appl. Math. Comp. 209 (2009), no. 2, 197-205. https://doi.org/10.1016/j.amc.2008.12.033
- P. L. Davis, A quasilinear parabolic and a related third order problem, J. Math. Anal. Appl. 49 (1970), 327-335.
- R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. 15 (1978), 1125-1150. https://doi.org/10.1137/0715075
- H. Guo, A remark on split least-squares mixed element procedures for pseudo-parabolic equations, Appl. Math. Comput. 217 (2011), no. 9, 4682-4690. https://doi.org/10.1016/j.amc.2010.11.021
- D. Kim and E-J Park, A posteriori error estimator for expanded mixed hybrid methods, Numer. Methods Partial Differential Equations 23 (2007), no. 2, 330-349. https://doi.org/10.1002/num.20178
- D. Shi and H. Wang, Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sin. Engl. Ser. 25 (2009), no. 2, 335-344. https://doi.org/10.1007/s10255-007-7065-y
- D. Shi and Y. Zhang, High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations, Appl. Math. and Comput., 218 (2011), no. 7, 3176-3186. https://doi.org/10.1016/j.amc.2011.08.054
- T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 289-303.