참고문헌
- An, D.-W., Ko, H.-H., Baek, J.-G., and Kim, J.-Y. (2009), A Yield Prediction in the Semiconductor Manufacturing Process Using Stepwise Support Vector Machine, IE Interfaces, 22(3), 252-253.
- Ankerst, M., Breunig, M. M., Kriegel, H. P., and Sander, J. (1999), OPTICS : Ordering points to identify the clustering structure, ACM SIGMOD Record, 28(2), 49-60.
- Bae, K-J. (1995), Technology trend about large memory products test, the magazine of the IEEK, 22(12), 1420-1430.
- Baek, D.-H. and Nam, J.-G. (2002), Semiconductor yield improvement system using the data mining, IE interfaces, 2002 single issue, 293-300.
- Chien, C. F., Wang, W. C., and Cheng, J. C. (2007), Data mining for yield enhancement in semiconductor manufacturing and an empirical study, Expert Systems with Applications, 33(1), 192-198. https://doi.org/10.1016/j.eswa.2006.04.014
- Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996), A density-based algorithm for discovering clusters in large spatial databases with noise, In KDD, 96, 226-231.
- Gardner, R. M., Bieker, J., and Elwell, S. (2000), Solving tough semiconductor manufacturing problems using data mining, In Advanced Semiconductor Manufacturing Conference and Workshop, 2000 IEEE/SEMI, 46-55.
- Hosmer, D. W. and Lemeshow (1989), Applied Logistic Regression, Wiley, New York.
- Hsieh, C. M., Hsu, L. L., and Ogura, S. (1995), U.S. Patent No. 5,466,625. Washington, DC : U.S. Patent and Trademark Office.
- Hsu, S. C. and Chien, C. F. (2007), Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing, International Journal of Production Economics, 107(1), 88-103. https://doi.org/10.1016/j.ijpe.2006.05.015
- Kang, P., Kim, D., Lee, S-K., Doh, S., and Cho, S. (2012), Estimating the Reliability of Virtual Metrology Predictions in Semiconductor Manufacturing : A Novelty Detection-based Approach. Journal of the Korean Institute of Industrial Engineers, 38(1), 46-56. https://doi.org/10.7232/JKIIE.2012.38.1.046
- Kim, K., Hwang, C. G., and Lee, J. G. (1998), DRAM technology perspective for gigabit era. Electron Devices, IEEE Transactions on, 45(3), 598-608. https://doi.org/10.1109/16.661221
- Kumar, N., Kennedy, K., Gildersleeve, K., Abelson, R., Mastrangelo, C. M., and Montgomery, D. C. (2006), A review of yield modelling techniques for semiconductor manufacturing, International Journal of Production Research, 44(23), 5019-5036. https://doi.org/10.1080/00207540600596874
- Ludwig, L., Sapozhnikova, E., Lunin, V., and Rosenstiel, W. (2000), Error classification and yield prediction of chips in semiconductor industry applications, Neural Computing and Applications, 9(3), 202-210. https://doi.org/10.1007/s005210070013
- Nurani, R. K., Strojwas, A. J., Maly, W. P., Ouyang, C., Shindo, W., Akella, R, and Derrett, J. (1998), In-line yield prediction methodologies using patterned wafer inspection information. Semiconductor Manufacturing, IEEE Transactions on, 11(1), 40-47.
- Oh, Y., Part, H., Yoo, A., Kim, N., Kim, Y., Kim, D., Choi, J., Yoon, S., and Yang, H. (2013), A Product Quality Prediction Model Using Real-Time Process Monitoring in Manufacturing Supply Chain, Journal of the Korean Institute of Industrial Engineers, 39(4), 231-325.
- Park, H.-Y., Jun, C.-H., Hong, Y.-S., and Kim, S.-Y. (1995), Development of a new cluster index for semiconductor wafer defects and simulation-based yield prediction models, Journal of the Korean Institute of Industrial Engineers, 21(3), 371-385.
- Park, K.-W., Jun, C.-H., and Kim, S.-Y. (1997), The comparison and use of yield model in semiconductor manufacturing, IE interfaces, 10(1), 79-93.
- Pieter, P. B. (2000), 2000 begins with a revised industry roadmap, Solid State Technology, 31-44.
- Quinlan, J. R. (1986), Induction of decision trees, Machine learning, 1(1), 81-106.
- Quirk, M. and Serda, J. (2001), Semiconductor manufacturing technology, NJ, USA: Prentice Hall, 1.
- Sukegawa, S. and Saeki, T. (1995), U.S. Patent No. 5,422,850. Washington, DC : U.S. Patent and Trademark Office.
- Tan, C. M. and Lau, K. T. (2011), Automated wafer defect map generation for process yield improvement, In Integrated Circuits (ISIC), 2011 13th International Symposium on IEEE, 313-316.
- Tobin, K. W., Karnowski, T. P., and Lakhani, F. (2005), Technology considerations for future semiconductor data management systems, Semiconductor Fabtech, 12.
- Uzsoy, R., Lee, C. Y., and Martin-Vega, L. A. (1992), A review of production planning and scheduling models in the semiconductor industry part I : system characteristics, performance evaluation and production planning, IIE transactions, 24(4), 47-60. https://doi.org/10.1080/07408179208964233
- Vapnik, V. (2000), The nature of statistical learning theory, springer.
- Weiss, S. and Kulikowski, C. (1991), Computer systems that learn, Morgan Kaufmann Publishers.