DOI QR코드

DOI QR Code

다양한 실리카 원과 결정화 촉진제를 이용한 나노크기의 TPA-Silicalite-1 제조

Preparation Nanosized TPA-Silicalite-1 with Different Silica Sources and Promoters

  • 정상진 (경성대학교 신소재공학과)
  • Jung, Sang-Jin (Department of Advanced Materials Engineering, Kyungsung University)
  • 투고 : 2014.03.22
  • 심사 : 2014.05.08
  • 발행 : 2014.06.10

초록

본 연구에서는 기체 분리를 위한 제올라이트 세라믹 멤브레인 제조에 적합한 입자크기와 형상을 갖춘 나노크기의 제올라이트를 TPAOH : $SiO_2$ : $H_2O$의 적합한 조성으로 합성하였으며 그 특성을 분석하였다. 실리카 원으로는 TEOS, LUDOX AS-40, CAB-O-SIL을 사용하고, TPAOH와 함께 출발물질로 하여 특정 조성의 TPAOH, $SiO_2$, $H_2O$ gel을 합성하고, $NaH_2PO_4$ 및 다양한 산 염기를 결정화 촉진제로 사용하였다. 합성시간을 단축할 수 있는 방법의 일환으로 저온에서 2단계 온도 변화법을 적용한 수열합성법으로 TPA-Silicalite-1을 합성하였으며 XRD, SEM, BET, TGA 등을 사용하여 분석하였다. 그 결과, 2단계 온도 변화법을 사용하고, 결정화 촉진제로서 $NaH_2PO_4$를 사용하였을 때가 최적의 합성 조건으로 입자크기100 nm, 비표면적 $416m^2/g$의 TPA-Silicalite-1 분말을 제조할 수 있었다.

In this study, nanosized TPA-silicalite-1 was synthesized with a suitable molar composition of TPAOH: $SiO_2$: $H_2O$ for the development of zeolite ceramic membranes to utilize as gas separation. As silica sources, TEOS, LUDOX AS-40 and CAB-O-SIL were used with the starting material of TPAOH. $NaH_2PO_4$, and a variety of acids and bases were used as promoters after TPAOH, $SiO_2$, $H_2O$ gel synthesis. To decrease synthesis time, a two step temperature change method was applied to the synthesis of TPA-silicalite-1 at a low temperature. TPA-silicalite-1 synthesized was analyzed with XRD, SEM, BET and TGA. As a result, TPA-silicalite-1 powders with a particle size of 100 nm and a specific surface area of $416m^2/g$ were obtained as optimum synthesis conditions when the two stage temperature change method was used with $NaH_2PO_4$ as promoter.

키워드

참고문헌

  1. R. W. Grose and E.M. Flanigen, Crystalline silica, US Patent 4,061,724 (1977).
  2. B. P. Perline, Synthesis of zeolite ZSM-5, US Patent 4,100,262 (1978).
  3. A. Erdern and L. B. Sand, Crystallization and metastable phase transformations of zeolite ZSM-5 in the $(TPA)_2O $ $Na_2O$ $K_2O$ $Al_2O_3$ $SiO_2$ $H_2O$ system, J. Catal., 60, 241-256 (1979). https://doi.org/10.1016/0021-9517(79)90146-5
  4. C. H. Lee, B. J. Ahn, W. Chang, and Y. D. Park, A Study of Quartz Formation from ZSM-5 Zeolite, Appl. Chem, 2, 1016-1019 (1998).
  5. Q. Li, Boriana Mihailova, D. Creaser, and J. Sterte, The nucleation period for crystallization of nanosized TPA-Silicalite-1 with varying silica source, Micro. Meso. Mater. 40, 53-62 (2000). https://doi.org/10.1016/S1387-1811(00)00242-0
  6. R. J. Argaure and G. R. Landolt, Crystalline zeolite zsm-5 and method of preparing the same, US Patent 3,702,886 (1972).
  7. R. van grieken, J. L. Sotelo, J. M. Menendez, and J. A. Melero, Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5, Micro. Meso. Mater. 39, 135-147 (2000). https://doi.org/10.1016/S1387-1811(00)00190-6
  8. Z. Gabelica, E. G. Derouane, and N. Blom, Synthesis and characterization of pentasil type zeolites: II. Structure-directing effect of the organic base or cation, Appl. Catal., 5, 109-117 (1983). https://doi.org/10.1016/0166-9834(83)80299-1
  9. G. T. Kokatailo, S. L. Lawton, D. H. Olison, and W. M. Meier, Structure of Synthetic Zeolite ZSM-5, Nature, 272, 437-438 (1978). https://doi.org/10.1038/272437a0
  10. R. Szostak, Molecular Sieves: Principles of Synthesis and Identification, Van Nostrand Reinhold, 79-101, NY, USA (1989).
  11. E. M. Flanigen, Review and New Perspectives in Zeolite Crystallization, Adv. Chem. Ser., 121, 119-139 (1973). https://doi.org/10.1021/ba-1973-0121.ch010
  12. S. H. Hyun, J. K. Song, and J. H. Kim, Synthesis and characterization of zeolite composite membrane (II): Synthesis and $CO_2$ seperation efficiency of ZSM-5 zeolite composite membrane, J. Ko, Ceram. Soc., 34, 747-757 (1997).
  13. C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of zeolite framework types, 6th ed., 212-213, Elsevier, NY, USA (2007).
  14. R. Kumar, P. Mikherjee, R. K. Pandey, P. Rajmohanan, and A. Bhaumik, Role of oxyanions as promoter for enhancing nucleation and crystallization in the synthesis of MFI-type microporous materials, Micro. Meso. Mater., 22, 23-31 (1998). https://doi.org/10.1016/S1387-1811(98)00100-0
  15. C. S. Tsay and A. S. T. Chiang, The synthesis of colloidal zeolite TPA-silicalite-1, Micro. Meso. Mater., 26, 89-99 (1998). https://doi.org/10.1016/S1387-1811(98)00219-4
  16. Q. Li, D. Creaser, and J. Sterte, The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis, Micro. Meso. Mater., 31, 141-150 (1999). https://doi.org/10.1016/S1387-1811(99)00064-5
  17. S. Mintova and V. Valychev, Effect of the silica source on the formation of nanosized silicalite-1: an in situ dynamic light scattering study, Micro. Meso. Mater., 55, 171-179 (2002). https://doi.org/10.1016/S1387-1811(02)00401-8
  18. Q. Li, Boriana Mihailova, D. Creaser, and J. Sterte, Aging effects on the nucleation and crystallization kinetics of colloidal TPA-silicalite-1, Micro. Meso. Mater., 43, 51-59 (2001). https://doi.org/10.1016/S1387-1811(00)00346-2
  19. S. H. Hyun, J. H. Kim, and J. K. Song, Synthesis and Characterization of Zeolite Composite Membranes (I) : Synthesis of ZSM-5 Type Zeolites, J. Ko, Ceram. Soc., 33, 1064-1072 (1996).
  20. D. A. Jacobs and J. A. Marteus, Synthesis of High-Silica Aluminosilicate Zeolite, Studies in Surface Science and Catalysis, 33, 80-101 (1987).
  21. B. J. Scheoman, J. Sterte, and J. E. Otterstadt, Analysis of the crystal growth mechanism of TPA-silicalite-1, Zeolite, 14, 568-575 (1994). https://doi.org/10.1016/0144-2449(94)90192-9
  22. E. L. Wu, S. L. Lawton, D. H. Olson, A. C. Rohrman, and G. T. Kokatailo, ZSM-5 Type Materials : Factors Affecting Crystal Symmetry, J. Phy. Chem., 83, 2777-2781 (1979). https://doi.org/10.1021/j100484a019
  23. Y. H. Ko, S. J. Kim, M. H. Kim, J. H. Park, J. B. Parise, and Y. S. Uh, New route for synthesizing Mn-silicalite-1, Micro. Meso. Mater., 30, 213-218 (1999). https://doi.org/10.1016/S1387-1811(99)00010-4