DOI QR코드

DOI QR Code

Solvothermal Synthesis of Supercrystals of Hematite via the Self-assembly of Nanocubes

  • Received : 2013.12.30
  • Accepted : 2014.02.05
  • Published : 2014.06.20

Abstract

Keywords

Experimental Section

FeCl3⋅6H2O (Aldrich), K4Fe(CN)6 (Aldrich), sodium oleate (TCI), oleic acid (Aldrich), and tetraoctylammonium bro-mide (TOABr, Aldrich) were used as received. In a typical synthesis of α-Fe2O3 supercrystals, 0.10 M FeCl3⋅6H2O was dissolved in 20 mL water. 1.83 g sodium oleate, 5.0 mL oleic acid, and 40 mL toluene were then added to the solution. The water-toluene bilayer mixture was vigorously stirring for 1 h at room temperature to allow the transfer of Fe3+ ions from the aqueous solution to the toluene phase through coordination with the oleate anions to form iron-oleate complexes. 3.28 g TOABr in 40 mL toluene was then added to 20 mL aqueous solution of Fe(CN)64− ions to obtain the TOA-[Fe(CN)6] complexes into the toluene phase. The two toluene solutions containing the Fe-OA and TOA-[Fe(CN)6] complexes were mixed under stirring. After mix-ing the two optically transparent solutions, the resulting solution was transferred to a 100 mL Teflon-lined autoclave. To prepare the α-Fe2O3 supercrystals, solvothermal reactions were conducted at 180 °C for 72 h. The product was collect-ed by centrifuging the solution at 4000 rpm for 10 min. The precipitated products were washed several times with water and ethanol, and dried at 60 °C for 12 h.

The α-Fe2O3 product was examined with a Raman micro-scope (Kaiser, RamanRxn Microprobe). The capping organic compound in the supercrystals of α-Fe2O3 was examined by using an FT-IR spectrometer (Perkin Elmer 100 FT-IR). The α-Fe2O3 product was also analyzed by powder X-ray diffr-action (XRD, PANanlytical, X’pert-pro MPD) using Cu Kα radiation. The morphologies of the supercrystals and the superlattice patterns of the nanocubes of α-Fe2O3 were ex-amined by using scanning electron microscopy (SEM, Hitachi S-4300) and high resolution transmission electron micro-scopy (HRTEM, JEOL JEM-3010), respectively.

References

  1. Talapin, D. V. ACS Nano 2008, 2, 1097. https://doi.org/10.1021/nn8003179
  2. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Nature Mater. 2004, 3, 891. https://doi.org/10.1038/nmat1251
  3. Ahniyaz, A.; Sakamoto, Y.; Bergstrom, L. Proc. Natl. Acad. Sci. 2007, 104, 17570. https://doi.org/10.1073/pnas.0704210104
  4. Quan, Z.; Fang, J. Nano Today 2010, 5, 390. https://doi.org/10.1016/j.nantod.2010.08.011
  5. Nguyen, T. D.; Do, T. O. J. Phys. Chem. C 2009, 113, 11204.
  6. Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. ChemPhysChem 2008, 9, 20. https://doi.org/10.1002/cphc.200700475
  7. Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2003, 107, 7441. https://doi.org/10.1021/jp030013+
  8. Chan, H.; Demortiere, A.; Vukovic, L.; Kral, P.; Petit, C. ACS Nano 2012, 6, 4203. https://doi.org/10.1021/nn3007338
  9. Zhang, J.; Kumbhar, A.; He, J.; Das, N. C.; Yang, K.; Wang, J. Q.; Wang, H.; Stokes, K. L.; Fang, J. J. Am. Chem. Soc. 2008, 130, 15203. https://doi.org/10.1021/ja806120w
  10. Mou, X.; Wei, X.; Li, Y.; Shen, W. CrystEngComm 2012, 14, 5107. https://doi.org/10.1039/c2ce25109d
  11. Wang, G.; Gou, X.; Horvat, J.; Park, J. J. Phys. Chem. C 2008, 112, 15220. https://doi.org/10.1021/jp803869e
  12. Wang, Z.; Luan, D.; Madhavi, S.; Li, C. M.; Lou, X. W. Chem. Commun. 2011, 8061.
  13. Liang, X.; Wang, X.; Zhuang, J.; Chen, Y.; Wang, D.; Li, Y. Adv. Funct. Mater. 2006, 16, 1805. https://doi.org/10.1002/adfm.200500884
  14. Wang, S. B.; Min, Y. L.; Yu, S. H. J. Phys. Chem. C 2007, 111, 3551. https://doi.org/10.1021/jp068647e
  15. Woo, K.; Lee, H. J.; Ahn, J. P.; Park, Y. S. Adv. Mater. 2003, 15, 1761. https://doi.org/10.1002/adma.200305561
  16. Mehdizadeh, R.; Saghatfororoush, L. A.; Sanati, S. Superlattices Microstruct. 2012, 52, 92. https://doi.org/10.1016/j.spmi.2012.03.017
  17. Lv, B.; Liu, Z.; Tian, H.; Xu, Y.; Wu, D.; Sun, Y. Adv. Funct. Mater. 2010, 20, 3987. https://doi.org/10.1002/adfm.201001021
  18. Jubb, A. M.; Allen, H. C. ACS Appl. Mater. Interfaces 2010, 2, 2804. https://doi.org/10.1021/am1004943
  19. Chamritski, I.; Burns, G. J. Phys. Chem. B 2005, 109, 4965. https://doi.org/10.1021/jp048748h
  20. Bai, F.; Wang, D.; Huo, Z.; Chen, W.; Liu, L.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. Angew. Chem. Int. Ed. 2007, 46, 6650. https://doi.org/10.1002/anie.200701355
  21. Lee, S. H.; Huh, Y. D. Bull. Korean Chem. Soc. 2012, 33, 1078. https://doi.org/10.5012/bkcs.2012.33.3.1078
  22. Hu, M.; Belik, A. A.; Imura, M.; Mibu, K.; Tsujimoto, Y.; Yamauchi, Y. Chem. Mater. 2012, 24, 2698. https://doi.org/10.1021/cm300615s
  23. Zboril, R.; Machala, L.; Mashlan, M.; Sharma, V. Cryst. Growth Des. 2004, 4, 1317. https://doi.org/10.1021/cg049748+

Cited by

  1. Self-assembly of anisotropic nanoparticles into functional superstructures vol.49, pp.16, 2020, https://doi.org/10.1039/d0cs00541j