DOI QR코드

DOI QR Code

THE TISSUE DOPPLER IMAGING DERIVED POST-SYSTOLIC VELOCITY NOTCH ORIGINATES AT THE AORTIC ANNULUS

  • Ouss, Alexandre J. (Department of Cardiology, Onze Lieve Vrouwe Gasthuis Hospital) ;
  • Riezebos, Robert K. (Department of Cardiology, Onze Lieve Vrouwe Gasthuis Hospital)
  • Received : 2013.11.04
  • Accepted : 2014.02.18
  • Published : 2014.03.27

Abstract

BACKGROUND: A distinct velocity pattern represented by a "notch" is observed during the time interval between the end of the systolic and the onset of the early diastolic velocity wave on longitudinal myocardial velocity curve. The origin of the post-systolic velocity notch (PSN) has not been resolved. METHODS: The high frame rate color tissue Doppler imaging of the apical longitudinal axis was performed in 32 healthy subjects. RESULTS: The time delays of the PSN onset at the posterior aortic wall (AW), the mid anteroseptal wall (MAS) and the posterior mitral annulus (MA) relatively to the anterior aortic annulus (AA) were found to be significantly longer than zero ($5.1{\pm}2.2$, $6.0{\pm}2.3$, $6.8{\pm}2.8ms$; p < 0.001). The amplitude was the highest at the AA when compared to the AW, the MAS and the MA ($4.77{\pm}1.28$ vs. $2.88{\pm}1.11$, $2.15{\pm}0.73$, $2.44{\pm}1.17cm/s$; p < 0.001). A second PSN spike was identifiable in 10/32 (31%) of the studied subjects at the AA. Of these, 9 (28%) exhibited a second PSN spike at the AW, 3 (9%) at the MAS and no one at the MA. CONCLUSION: The AA represents the site of the earliest onset and maximal amplitude of the PSN on the longitudinal velocity curve suggesting its mechanism to be that of an energy release at the instant of the aortic valve closure causing an apically directed acceleration of the myocardium. A substantial number of healthy subjects exhibit a second PSN spike predominantly at the level of the AA. Its mechanism remains to be elucidated.

Keywords

References

  1. Isaaz K, Munoz del Romeral L, Lee E, Schiller NB. Quantitation of the motion of the cardiac base in normal subjects by Doppler echocardiography. J Am Soc Echocardiogr 1993;6:166-76. https://doi.org/10.1016/S0894-7317(14)80487-2
  2. Pai RG, Gill KS. Amplitudes, durations, and timings of apically directed left ventricular myocardial velocities: I. Their normal pattern and coupling to ventricular filling and ejection. J Am Soc Echocardiogr 1998;11:105-11. https://doi.org/10.1016/S0894-7317(98)70067-7
  3. Lind B, Nowak J, Cain P, Quintana M, Brodin LA. Left ventricular isovolumic velocity and duration variables calculated from colour-coded myocardial velocity images in normal individuals. Eur J Echocardiogr 2004;5:284-93. https://doi.org/10.1016/j.euje.2003.11.007
  4. Remme EW, Lyseggen E, Helle-Valle T, Opdahl A, Pettersen E, Vartdal T, Ragnarsson A, Ljosland M, Ihlen H, Edvardsen T, Smiseth OA. Mechanisms of preejection and postejection velocity spikes in left ventricular myocardium: interaction between wall deformation and valve events. Circulation 2008;118:373-80. https://doi.org/10.1161/CIRCULATIONAHA.107.748491
  5. Kanai H, Koiwa Y. Myocardial rapid velocity distribution. Ultrasound Med Biol 2001;27:481-98. https://doi.org/10.1016/S0301-5629(01)00341-6
  6. Terkelsen CJ, Poulsen SH, Norgaard BL, Lassen JF, Gerdes JC, Sloth E, Nielsen TT, Andersen HR, Egeblad H. Does postsystolic motion or shortening predict recovery of myocardial function after primary percutanous coronary intervention? J Am Soc Echocardiogr 2007;20:505-11. https://doi.org/10.1016/j.echo.2006.10.004
  7. Citro R, Galderisi M. Myocardial postsystolic motion in ischemic and not ischemic myocardium: the clinical value of tissue Doppler. Echocardiography 2005;22:525-32. https://doi.org/10.1111/j.1540-8175.2005.40014.x
  8. Galderisi M, Cicala S, Sangiorgi G, Caso P, de Divitiis O. Tissue Doppler-derived postsystolic motion in a patient with left bundle branch block: a sign of myocardial wall asynchrony. Echocardiography 2002;19:79-81. https://doi.org/10.1046/j.1540-8175.2002.00079.x
  9. Fraser AG, Payne N, Madler CF, Janerot-Sjoberg B, Lind B, Grocott-Mason RM, Ionescu AA, Florescu N, Wilkenshoff U, Lancellotti P, Wutte M, Brodin LA; MYDISE Investigators. Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr 2003;4:43-53. https://doi.org/10.1053/euje.4.1.43
  10. Ring M, Persson H, Mejhert M, Edner M. Post-systolic motion in patients with heart failure--a marker of left ventricular dyssynchrony? Eur J Echocardiogr 2007;8:352-9. https://doi.org/10.1016/j.euje.2006.07.006
  11. Badran HM, Elnoamany MF, Seteha M. Tissue velocity imaging with dobutamine stress echocardiography--a quantitative technique for identification of coronary artery disease in patients with left bundle branch block. J Am Soc Echocardiogr 2007;20:820-31. https://doi.org/10.1016/j.echo.2007.01.007
  12. Celutkiene J, Sutherland GR, Laucevicius A, Zakarkaite D, Rudys A, Grabauskiene V. Is post-systolic motion the optimal ultrasound parameter to detect induced ischaemia during dobutamine stress echocardiography? Eur Heart J 2004;25:932-42. https://doi.org/10.1016/j.ehj.2004.04.005
  13. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Klein AL, Stewart WJ, Thomas JD. Myocardial wall velocity assessment by pulsed Doppler tissue imaging: characteristic findings in normal subjects. Am Heart J 1996;132:648-56. https://doi.org/10.1016/S0002-8703(96)90251-3
  14. Sengupta PP, Khandheria BK, Korinek J, Wang J, Belohlavek M. Biphasic tissue Doppler waveforms during isovolumic phases are associated with asynchronous deformation of subendocardial and subepicardial layers. J Appl Physiol (1985) 2005;99:1104-11. https://doi.org/10.1152/japplphysiol.00191.2005
  15. Remme EW, Lyseggen E, Helle-Valle T, Pettersen E, Ragnarsson A, Ihlen H, Edvardsen T, Smiseth OA, Opdahl A, Vartdal T, Ljosland M. Response to letter regarding article, "Mechanisms of preejection and postejection velocity spikes in left ventricular myocardium: interaction between wall deformation and valve events". Circulation 2009;119:e205. https://doi.org/10.1161/CIRCULATIONAHA.108.823716
  16. Van Steenhoven AA, Verlaan CW, Veenstra PC, Reneman RS. In vivo cinematographic analysis of behavior of the aortic valve. Am J Physiol 1981;240:H286-92.
  17. Smith D, Craige E. Influence of the aortic component of the second heart sound on left ventricular maximal negative dP/dt in the dog. Am J Cardiol 1985;55:205-9. https://doi.org/10.1016/0002-9149(85)90329-7
  18. Bogren HG, Buonocore MH. Blood flow measurements in the aorta and major arteries with MR velocity mapping. J Magn Reson Imaging 1994;4:119-30. https://doi.org/10.1002/jmri.1880040204
  19. Bogren HG, Buonocore MH. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging 1999;10:861-9. https://doi.org/10.1002/(SICI)1522-2586(199911)10:5<861::AID-JMRI35>3.0.CO;2-E
  20. Aase SA, Torp H, Stoylen A. Aortic valve closure: relation to tissue velocities by Doppler and speckle tracking in normal subjects. Eur J Echocardiogr 2008;9:555-9. https://doi.org/10.1093/ejechocard/jen120
  21. Oh JK, Tajik J. The return of cardiac time intervals: the phoenix is rising. J Am Coll Cardiol 2003;42:1471-4. https://doi.org/10.1016/S0735-1097(03)01036-2
  22. Weidemann F, Kowalski M, D'hooge J, Bijnens B, Sutherland GR. Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function. Basic Res Cardiol 2001;96:595-605. https://doi.org/10.1007/s003950170011
  23. Aase SA, Stoylen A, Ingul CB, Frigstad S, Torp H. Automatic timing of aortic valve closure in apical tissue Doppler images. Ultrasound Med Biol 2006;32:19-27. https://doi.org/10.1016/j.ultrasmedbio.2005.09.004
  24. Aase SA, Bjork-Ingul C, Thorstensen A, Torp H, Stoylen A. Aortic valve closure: relation to tissue velocities by Doppler and speckle tracking in patients with infarction and at high heart rates. Echocardiography 2010;27:363-9. https://doi.org/10.1111/j.1540-8175.2009.01025.x