DOI QR코드

DOI QR Code

Estimation of Above-Ground Biomass of a Tropical Forest in Northern Borneo Using High-resolution Satellite Image

  • Phua, Mui-How (School of International Tropical Forestry, Universiti Malaysia Sabah) ;
  • Ling, Zia-Yiing (School of International Tropical Forestry, Universiti Malaysia Sabah) ;
  • Wong, Wilson (School of International Tropical Forestry, Universiti Malaysia Sabah) ;
  • Korom, Alexius (School of International Tropical Forestry, Universiti Malaysia Sabah) ;
  • Ahmad, Berhaman (School of International Tropical Forestry, Universiti Malaysia Sabah) ;
  • Besar, Normah A. (School of International Tropical Forestry, Universiti Malaysia Sabah) ;
  • Tsuyuki, Satoshi (Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Ioki, Keiko (Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Hoshimoto, Keigo (Graduate School of Agricultural and Life Sciences, The University of Tokyo) ;
  • Hirata, Yasumasa (Forestry and Forest Products Research Institute (FFPRI)) ;
  • Saito, Hideki (Forestry and Forest Products Research Institute (FFPRI)) ;
  • Takao, Gen (Forestry and Forest Products Research Institute (FFPRI))
  • Received : 2013.10.16
  • Accepted : 2013.11.23
  • Published : 2014.05.31

Abstract

Estimating above-ground biomass is important in establishing an applicable methodology of Measurement, Reporting and Verification (MRV) System for Reducing Emissions from Deforestation and Forest Degradation-Plus (REDD+). We developed an estimation model of diameter at breast height (DBH) from IKONOS-2 image that led to above-ground biomass estimation (AGB). The IKONOS image was preprocessed with dark object subtraction and topographic effect correction prior to watershed segmentation for tree crown delineation. Compared to the field observation, the overall segmentation accuracy was 64%. Crown detection percent had a strong negative correlation to tree density. In addition, satellite-based crown area had the highest correlation with the field measured DBH. We then developed the DBH allometric model that explained 74% of the data variance. In average, the estimated DBH was very similar to the measured DBH as well as for AGB. Overall, this method can potentially be applied to estimate AGB over a relatively large and remote tropical forest in Northern Borneo.

Keywords

References

  1. Asner GP, Palace M, Keller M, Pereira R Jr, Silva JNM, Zweede JC. 2002. Estimating canopy structure in an Amazon Forest from laser range finder and IKONOS satellite observations. Biotrop 34: 483-492. https://doi.org/10.1111/j.1744-7429.2002.tb00568.x
  2. Asner GP, Warner AS. 2003. Canopy shadow in IKONOS satellite observations of tropical forests and savannas. Rem Sens of Environ 87: 521-533. https://doi.org/10.1016/j.rse.2003.08.006
  3. Avalos G, Mulkey SS. 1999. Seasonal changes in liana cover in the canopy of a neotropical dry forest. Biotrop 3: 186-191.
  4. Bartelink HH. 1996. Allometric relationships on biomass and needle area of Douglas-fir. For Ecol Manage 86: 193-203. https://doi.org/10.1016/S0378-1127(96)03783-8
  5. Broadbent EN, Asner GP, Pena-Claros M, Palace M, Soriano M. 2008. Spatial partitioning of biomass and diversity in a lowland Bolivian forest: Linking field and remote sensing measurements. For Ecol Manage 255: 2602-2616. https://doi.org/10.1016/j.foreco.2008.01.044
  6. Brown S. 2002. Measuring carbon in forests: current status and future challenges. Environ Pollution 116: 363-372. https://doi.org/10.1016/S0269-7491(01)00212-3
  7. Chavez PS Jr. 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Rem Sens Environ 24: 459-579. https://doi.org/10.1016/0034-4257(88)90019-3
  8. Clinton N, Holt A, Scarborough J, Li Y, Peng G. 2010. Accuracy assessment measures for object-based image segmentation goodness. Photogram Eng Rem Sens 76: 289-299. https://doi.org/10.14358/PERS.76.3.289
  9. FAO. 2005. Global Forest Resources Assessment 2005. Food and Agriculture Organization, Rome, Italy.
  10. Gebreslasiea MT, Ahmed FB, Aardt VJ, Blakeway F. 2011. Individual tree detection based on variable and fixed window size local maxima filtering applied to IKONOS imagery for even-aged Eucalyptus plantation forests. Int J Rem Sens 32: 4141-4154. https://doi.org/10.1080/01431161003777205
  11. Gibbs HK, Brown S, Niles JO, Foley JA. 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2: 1-13.
  12. Haijian Ma Qiming Q, Xinyi S. 2008. Shadow segmentation and compensation in high resolution satellite images. Proc Geosci Rem Sens Symp II: 1036-1039.
  13. Hirata Y, Fruya N, Suzuki M, Yamamoto H. 2008. Estimation of stand attributes in cryptomeria japonica and chamaecyparis obtusa stands from single tree detection using small-footprint airborne LiDAR data. J For Plann 13: 303-309.
  14. Hirata Y, Tsubota Y, Sakai A. 2009. Allometric models of DBH and crown area derived from QuickBird panchromatic data in Cryptomeria japonica and Chamaecyparis obtusa stands. Int J Rem Sens 30: 5071-5088. https://doi.org/10.1080/01431160903022977
  15. Jing L, Hu B, Noland T, Li J. 2012. An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS J Photogram Rem Sens 70: 88-98. https://doi.org/10.1016/j.isprsjprs.2012.04.003
  16. Kenzo T, Ichie T, Hattori D, Itioka T, Handa C, Ohkubo T, Kendawang JJ, Nakamura M, Sakaguchi M, Takahashi N, Okamoto M, Tanaka-Oda A, Sakurai K, Ninomiya I. 2009. Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J Trop Ecol 25: 371-386. https://doi.org/10.1017/S0266467409006129
  17. Kubo M, Muramoto KI. 2005. Tree crown detection and classification using forest imagery by IKONOS. Proc Geosci Rem Sens Symp 6: 4358-4361.
  18. Langner A, Samejima H, Ong RC, Titin J, Kitayama K. 2012. Integration of carbon conservation into sustainable forest management using high resolution satellite imagery: A case study in Sabah, Malaysian Borneo. Int J Applied Earth Observ Geoinfor 18: 305-312. https://doi.org/10.1016/j.jag.2012.02.006
  19. Leckie DG, Gougeon FA, Tinis S, Nelson T, Burnett CN, Paradine D. 2005. Automated tree recognition in old growth conifer stands with high resolution digital imagery. Rem Sens Environ 94: 311-326. https://doi.org/10.1016/j.rse.2004.10.011
  20. Morel AC, Fisher JB, Malhi Y. 2012. Evaluating the potential to monitor aboveground biomass in forest and oil palm in Sabah, Malaysia, for 2000-2008 with Landsat ETM+ and ALOS-PALSAR. Int J Rem Sens 33: 3614-3639. https://doi.org/10.1080/01431161.2011.631949
  21. Muukkonen P, Heiskanen J. 2007. Biomass estimation over a large area based on Standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Rem Sens Environ 107: 617-624. https://doi.org/10.1016/j.rse.2006.10.011
  22. Palace M, Keller M, Asner GP, Hagen S, Braswell B. 2007. Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties. Biotrop 40: 141-150.
  23. Peterson B, Gerlach F, Hutchin K. 2001. IKONOS relative spectral response and radiometric calibration coefficients. Document number SE-REF-016, Revision A, Space Imaging, Thornton, Colorado, USA.
  24. Phu MH, Saito H. 2003. Estimation of biomass of a mountainous tropical forest using Landsat TM data. Can J Rem Sens 29: 429-440. https://doi.org/10.5589/m03-005
  25. Pouliot D, King D. 2005. Approaches for optimal automated individual tree crown detection in regenerating coniferous forests. Can J Rem Sens 31: 255-267. https://doi.org/10.5589/m05-011
  26. Pouliot DA, King DJ, Bell FW, Pitt DG. 2002. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Rem Sens Environ 82: 322-334. https://doi.org/10.1016/S0034-4257(02)00050-0
  27. Smith JA, Lin TL, Ranson KL. 1980. The lambertian assumption and landsat data. Photogram Eng Rem Sens 46: 1183-1189.
  28. Song C, Dickinson MB, Su L, Zhang S, Yaussey D. 2010. Estimating average tree crown size using spatial information from IKONOS and QuickBird images: Across-sensor and across-site comparisons. Rem Sens Environ 114: 1099-1107. https://doi.org/10.1016/j.rse.2009.12.022
  29. Vermote EF, El Saleous N, Justice CO, Kaufman YJ, Privette JL, Remer L, Roger JC, Tanre D. 1997. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J Geophys Res 102: 17131-17141. https://doi.org/10.1029/97JD00201
  30. Wang LJ, Gong P Biging GS. 2004. Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery. Photogram Eng Rem Sens 70: 351-357. https://doi.org/10.14358/PERS.70.3.351
  31. Wulder MA, Niemann KO, Goodenough DG. 2002. Error reduction methods for local maximum filtering of high spatial resolution imagery for locating trees. Can J Rem Sens 28: 621-628. https://doi.org/10.5589/m02-059
  32. Whitemore TC. 1984. Tropical rain forests of the Far East. Clarendon Press, Oxford, United Kingdom.
  33. Yamakura T, Hagihara A, Sukardjo S, Ogawa H. 1986. Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Vegetatio 68: 71-82.

Cited by

  1. Seeing trees from space: above-ground biomass estimates of intact and degraded montane rainforests from high-resolution optical imagery vol.10, pp.3, 2017, https://doi.org/10.3832/ifor2204-010
  2. Assessing the availability of forest biomass for bioenergy by publicly available satellite imagery vol.11, pp.4, 2018, https://doi.org/10.3832/ifor2655-011