References
- M. C. Martin-Villa, C. Vidal-Valverde, M.V. Dabrio, and E. Rojas-Hidalgo, 'Chromatographic measurement of the carbohydrate content of some commonly used soft drinks' Am. J. Clin. Nutr., 34, 1432 (1981).
- F. Chinnici, U. Spinabelli, C. Riponi, and A. Amati, 'Optimization of the determination of organic acids and sugars in fruit juices by ion-exclusion liquid chromatography' J. Food Comp. Anal., 18, 121 (2005). https://doi.org/10.1016/j.jfca.2004.01.005
- J. F. Muir, R. Rose, O. Rosella, K. Liels, J. S. Barrett, S. J. Shepherd, and P. R. Gibson, 'Measurement of shortchain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography (HPLC)' J. Agric. Food Chem., 57, 554 (2009). https://doi.org/10.1021/jf802700e
- C. Zhang and K. S. Suslick, 'A colorimetric sensor array for organics in water' J. Am. Chem. Soc., 127, 11548 (2005). https://doi.org/10.1021/ja052606z
- S. H. Lim, C. J. Musto, E. Park, W. Zhong, and K. S. Suslick, 'A colorimetric sensor array for detection and identification of sugars' Org. Lett., 10, 4405 (2008). https://doi.org/10.1021/ol801459k
- M. Luzzana, D. Agnellini, P. Cremonesi, and G. Caramenti, 'Enzymatic reactions for the determination of sugars in food samples using the differential pH technique' Analyst, 126, 2149 (2001). https://doi.org/10.1039/b106880f
- S. Miertus, J. Katlik, A. Pizzariello, M. Stred'ansky, J. Svitel, and J. Svorc, 'Amperometric biosensors based on solid binding matrices applied in food quality monitoring' Biosens. Bioelectron., 13, 911 (1998). https://doi.org/10.1016/S0956-5663(98)00063-3
- C. A. B. Garcia, G. de Oliveira Neto, L. T. Kubota, and L. A. Grandin, 'A new amperometric biosensor for fructose using a carbon paste electrode modified with silica gel coated with Meldola's Blue and fructose 5-dehydrogenase' J. Electroanal. Chem., 418, 147 (1996). https://doi.org/10.1016/S0022-0728(96)04775-4
- P. A. Paredes, J. Parellada, V. M. Fernandez, I. Katakis, and E. Dominguez, 'Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenase for the determination of fructose in food analysis' Biosens. Bioelectron., 12, 1233 (1997). https://doi.org/10.1016/S0956-5663(97)00090-0
- C. Batchelor-McAuley, Y. Du. G. G. Wildgoose, and R. G. Compton, 'The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide' Sens. Actuators B, 135, 230 (2008). https://doi.org/10.1016/j.snb.2008.08.006
- C. Batchelor-McAuley, G. G. Widgoose, R. G. Compton, L. Shao, and M. L. H. Green, 'Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes' Sens. Actuators B, 32, 356 (2008).
- K. B. Male, S. H. Rapovic, Y. Liu, D. Wang, and J. H. T. Luong, 'Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes' Anal. Chim. Acta, 516, 35 (2004). https://doi.org/10.1016/j.aca.2004.03.075
- C. A. B. Garcia, G. de Oliveira Neto, and L. T. Kubota, 'New fructose biosensors utilizing a polypyrrole film and d-fructose 5-dehydrogenase immobilized by different processes' Anal. Chim. Acta, 374, 201 (1998). https://doi.org/10.1016/S0003-2670(98)00259-1
-
J. Chen, W. D. Zhang, and J. S. Ye, 'Nonenzymatic electrochemical glucose sensor based on
$MnO_2$ /MWNTs nanocomposite' Electrochem. Commun., 10, 1268 (2008). https://doi.org/10.1016/j.elecom.2008.06.022 - X. Kang, Z. Mai, X. Zou, P. Cai, and J. Mo, 'A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode' Anal. Biochem., 363, 143 (2007). https://doi.org/10.1016/j.ab.2007.01.003
- L. Q. Rong, C. Yang, Q. Y. Qian, and X. H. Xia, 'Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes' Talanta, 72, 819 (2007). https://doi.org/10.1016/j.talanta.2006.12.037
-
J. Kong, S. Shi, L. Kong, X. Zhu, and J. Ni, 'Preparation and characterization of
$PbO_2$ electrodes doped with different rare earth oxides' Electrochim. Acta, 53, 2048 (2007). https://doi.org/10.1016/j.electacta.2007.09.003 - W. Gorski, and R. T. Kennedy, 'Electrocatalyst for nonenzymatic oxidation of glucose in neutral saline solutions' J. Electroanal. Chem., 424, 43 (1997). https://doi.org/10.1016/S0022-0728(96)04931-5
-
S. Ai, M. Gao, W. Zhang, Q. Wang, Y. Xie, and L. Jin, 'Preparation of Ce-
$PbO_2$ modified electrode and its application in detection of anilines' Talanta, 62, 445 (2004). https://doi.org/10.1016/j.talanta.2003.08.019 -
N. D. Popovic, J. A. Cox, and D. C. Johnson, 'Electrocatalytic function of Bi(V) sites in heavily-doped
$PbO_2$ -film electrodes applied for anodic detection of selected sulfur compounds' J. Electroanal. Chem., 455, 153 (1998). https://doi.org/10.1016/S0022-0728(98)00157-0 -
N. D. Popovic, J. A. Cox, and D. C. Johnson, 'A mathematical model for anodic oxygen-transfer reactions at Bi(V)-doped
$PbO_2$ -film electrodes' J. Electroanal. Chem., 456, 203 (1998). https://doi.org/10.1016/S0022-0728(98)00219-8 -
P. Westbroek and E. Temmerman, 'In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring-Pt/
$PbO_2$ disc electrode' Anal. Chim. Acta, 437, 95 (2001). https://doi.org/10.1016/S0003-2670(01)00927-8 - L. M. Hanover and J. S. White, 'Manufacturing, composition, and applications of fructose' Am. J. Clin. Nutr., 58, 724S (1993). https://doi.org/10.1093/ajcn/58.5.724S
- S. Ai, M. Gao, Y. Yang, J. Li, and L. Jin, 'Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode' Electroanalysis, 16, 404 (2004). https://doi.org/10.1002/elan.200302839
- A. A. Franke, L. J. Custer, C. Arakaki, and S. P. Murphy, 'Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii' J. Food Comp. Anal., 17, 1 (2004). https://doi.org/10.1016/S0889-1575(03)00066-8
- M. Hagg, S. Ylikoski, and J. Kumpulainen, 'Vitamin C content in fruits and berries consumed in finland', J. Food Comp. Anal., 8, 12 (1995). https://doi.org/10.1006/jfca.1995.1003
- S. S. Schiffman, E. A. Sattely-Miller, B. G. Graham, B. J. Booth, and K. M. Gibes, 'Synergism among ternary mixtures of fourteen sweeteners' Chem. Senses, 25, 131 (2000). https://doi.org/10.1093/chemse/25.2.131
- A. A. Velichenko and D. Devilloers, 'Electrodeposition of fluorine-doped lead dioxide' J. Fluorine Chem., 128, 269 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.010
- H. Chung, H. Yang, W. Kim, and J. Park, 'Nickel oxidemodified composite electrode for electrochemical detection of polyhydroxyl compounds in liquid chromatographic analysis', Anal. Chim. Acta, 471, 195 (2002). https://doi.org/10.1016/S0003-2670(02)00927-3
- S. Buratti, B. Brunetti, and S. Mannino, 'Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system' Talanta, 76, 454 (2008). https://doi.org/10.1016/j.talanta.2008.03.031
-
V. Dharuman and K. C. Pillai, '
$RuO_2$ electrode surface effects in electrocatalytic oxidation of glucose' J. Solid State Electrochem., 10, 967 (2006). https://doi.org/10.1007/s10008-005-0033-7
Cited by
- A highly sensitive and simply operated protease sensor toward point-of-care testing vol.141, pp.8, 2016, https://doi.org/10.1039/C6AN00251J