DOI QR코드

DOI QR Code

Effect of Mulberry (Morus alba L.) Extract on Blood Flow Improvement

오디 추출물(Morus alba L.)의 혈행개선 효과

  • Received : 2013.05.02
  • Accepted : 2014.03.26
  • Published : 2014.04.30

Abstract

The objective of this study was to investigate the beneficial effects of mulberry extract (MBE) on blood flow improvement. The $SC_{50}$ value for the DPPH radical scavenging activity of MBE was $89.36{\pm}5.46{\mu}g/mL$. Analysis of the cellular toxicity of MBE on RAW 264.7 and HepG2 cells showed no toxicity under a concentration of 2,500 ${\mu}g/mL$. We found that MBE inhibited the enzyme activity of cyclooxygenase (COX)-2 as well as oxidation of human LDL. Western blotting analysis showed that MBE inhibited protein expression of COX-2 and 5-lipoxygenase in RAW 264.7 cells. In addition, MBE inhibited protein expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in human umbilical vein endothelial cells. Furthermore, MBE reduced the serum levels of total cholesterol and C-reactive protein in a concentration-dependent manner. These results both in vitro and in vivo suggest that MBE can be employed for the improvement of blood flow.

본 연구에서는 다양한 생리활성물질을 다량 함유하고 있는 국내산(전라북도 부안군) 오디의 혈액순환장애의 개선 효과를 확인하기 위하여 in vitro 및 고지혈증 동물모델을 이용한 실험을 진행하였다. MBE가 DPPH 라디칼을 50% 소거하는 $SC_{50}$값은 $89.36{\pm}5.46{\mu}g/mL$로 정제되지 않은 복합물질임을 감안하면 다른 식물추출물에 비해 항산화능이 우수함을 알 수 있었다. RAW 264.7 세포 및 HepG2 세포에 대한 MBE의 세포독성은 2,500 ${\mu}g/mL$ 이하의 농도를 처리한 경우 세포독성을 나타내지 않았다. In vitro 실험에서 COX-2의 활성저해 효과를 측정한 결과 MBE의 $IC_{50}$값은 $215.94{\pm}18.15$이었고, human LDL의 산화억제 효과는 최종반응 농도가 200 및 400 ${\mu}g/mL$일 경우 유의적인 감소(P<0.05) 효과가 있었다. 또한 TNF-${\alpha}$에 의하여 활성화된 HUVECs에서 MBE가 증가된 ICAM-1 및 VCAM-1의 발현을 감소(P<0.05)시켰으며 LPS에 의하여 활성화된 RAW 264.7 세포에서 MBE가 증가된 COX-2 및 5-LO의 발현을 감소(P<0.05)시킴을 알 수 있었다. 고지혈증 동물모델을 이용한 실험에서 MBE의 일부 실험군(200 mg 및 400 mg/kg 체중/day, 14 days)에서 혈청 total cholesterol의 수치는 음성대조군에 비해 유의적으로 감소(P<0.05)시켰으나 혈청 C-reactive protein의 수치는 모든 실험군에서 음성대조군 대비 유의적으로 감소하지 않았다. 이러한 MBE의 항산화능, COX-2 활성억제 및 COX-2와 5-LO의 발현억제를 통한 염증억제, 혈중 total cholesterol 감소를 통한 이상지질혈증의 개선 효과 및 ICAM-1과 VCAM-1의 발현억제를 통한 혈관협착 방지의 효과들을 종합해 보면 오디추출물인 MBE가 혈액순환장애를 유발하거나 확대시키는 다양한 핵심요소들을 다각도로 개선시킴으로써 혈액순환장애의 예방과 치료에 긍정적인 효과가 있을 것으로 사료된다.

Keywords

References

  1. Park SW, Jung YS, Ko KC. 1997. Quantitative analysis of anthocyanins among mulberry cultivars and their pharmacological screening. Hortic Environ Biotechnol 38: 722-724.
  2. Kim HB, Kim SL. 2003. Identification of C3G (cyanidin-3 glucoside) from mulberry fruits and quantification with different varieties. Korean J Seric Sci 45: 90-95.
  3. Kim EO, Lee YJ, Leem HH, Seo IH, Yu MH, Kang DH, Choi SW. 2010. Comparison of nutritional and functional constituents, and physicochemical characteristics of mulberry from seven different Morus alba L. cultivars. J Korean Soc Food Sci Nutr 39: 1467-1475. https://doi.org/10.3746/jkfn.2010.39.10.1467
  4. Kim HB, Kim AJ, Kim SY. 2003. The analysis of functional materials in mulberry fruit and food product development trends. Food Sci Ind 36: 49-60.
  5. Kim MH, Ko KC, Lim SH, Yu YS. 1980. Study on the usability of mulberry fruit. Fruit characteristics of mulberry. Coll of Agric Bull SNU 5: 221-223.
  6. Kim TW, Kwon YB, Lee JH, Yang IS, Youm JK, Lee HS, Moon JY. 1996. A study on the antidiabetic effect of mulberry fruits. Korean J Seric Sci 38: 100-107.
  7. Lee SH, Kim GH. 2008. Inhibitory Effect of mulberry extracts on angiogenesis in porcine artery endothelial cells. J Life Sci 18: 653-659. https://doi.org/10.5352/JLS.2008.18.5.653
  8. Kim HY, Park JY. 2000. Oxidative stress and atherosclerosis. J Korean Soc Endocrinol 15: 1-14.
  9. Lutgens E, van Suylen RJ, Faber BC, Gijbels MJ, Eurlings PM, Bijnens AP, Cleutjens KB, Heeneman S, Daemen MJ. 2003. Atherosclerotic plaque rupture: local or systemic process? Arterioscler Thromb Vasc Biol 23: 2123-2130. https://doi.org/10.1161/01.ATV.0000097783.01596.E2
  10. Ross R. 1999. Atherosclerosis-an inflammatory disease. New Engl J Med 340: 115-126. https://doi.org/10.1056/NEJM199901143400207
  11. Libby P, Ridker PM, Maseri A. 2002. Inflammation and atherosclerosis. Circulation 105: 1135-1143. https://doi.org/10.1161/hc0902.104353
  12. Kockx MM, Cromheeke KM, Knaapen MW, Bosmans JM, De Meyer GR, Herman AG, Bult H. 2003. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol 23: 440-446. https://doi.org/10.1161/01.ATV.0000057807.28754.7F
  13. Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK, Badimon JJ, O'Connor WN. 2004. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 110: 2032-2038. https://doi.org/10.1161/01.CIR.0000143233.87854.23
  14. Topper JN, Cai J, Falb D, Gimbrone MA Jr. 1996. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A 93: 10417-10422. https://doi.org/10.1073/pnas.93.19.10417
  15. Dichtl W, Nilsson L, Goncalves I, Ares MP, Banfi C, Calara F, Hamsten A, Eriksson P, Nilsson J. 1999. Very low-density lipoprotein activates nuclear factor-${\kappa}B$ in endothelial cells. Circ Res 84: 1085-1094. https://doi.org/10.1161/01.RES.84.9.1085
  16. Kiener PA, Davis PM, Murray JL, Youssef S, Rankin BM, Kowala M. 2001. Stimulation of inflammatory responses in vitro and in vivo by lipophilic HMG-CoA reductase inhibitors. Int Immunopharmacol 1: 105-118. https://doi.org/10.1016/S0162-3109(00)00272-1
  17. Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr, Gimbrone MA Jr. 1994. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest 94: 885-891. https://doi.org/10.1172/JCI117410
  18. Libby P, Simon DI. 2001. Inflammation and thrombosis: the clot thickens. Circulation 103: 1718-1720. https://doi.org/10.1161/01.CIR.103.13.1718
  19. Racz A, Veresh Z, Lotz G, Bagi Z, Koller A. 2010. Cyclooxygenase-2 derived thromboxane A2 and reactive oxygen species mediate flow-induced constrictions of venules in hyperhomocysteinemia. Atherosclerosis 208: 43-49. https://doi.org/10.1016/j.atherosclerosis.2009.06.014
  20. Nodai A, Machida T, Izumi S, Hamaya Y, Kohno T, Igarashi Y, Iizuka K, Minami M, Hirafuji M. 2007. Sphingosine 1-phosphate induces cyclooxygenase-2 via $Ca^{2+}$-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. Life Sci 80: 1768-1776. https://doi.org/10.1016/j.lfs.2007.02.008
  21. Stemme S, Faber B, Holm J, Witztum JL, Hansson GK. 1995. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A 92: 3893-3897. https://doi.org/10.1073/pnas.92.9.3893
  22. Sladowski D, Steer SJ, Clothier RH, Balls M. 1993. An improved MTT assay. J Immunol Methods 157: 203-207. https://doi.org/10.1016/0022-1759(93)90088-O
  23. Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90: 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  24. Jacob S, Laury-Kleintop L, Lanza-Jacoby S. 2008. The select cyclooxygenase-2 inhibitor celecoxib reduced the extent of atherosclerosis in apo E-/- mice. J Surg Res 146: 135-142. https://doi.org/10.1016/j.jss.2007.04.040
  25. Gabriel AB, Wulf H, Anne B, Roland S, Klaus AD, Hans PD, Wulf D, Jürgen M, Ralf K. 2005. Increased cyclooxygenase- 2 expression in peripheral blood mononuclear cells of smokers and hyperlipidemic subjects. Free Radic Biol Med 38: 235-242. https://doi.org/10.1016/j.freeradbiomed.2004.10.021
  26. Tsukasa N, Chifuyu U, Shiori O, Teruo I, Noriaki S, Hikaru K. 2003. Effect of low-density lipoprotein apheresis on plasma endothelin-1 levels in diabetic hemodialysis patients with arteriosclerosis obliterans. J Diabetes Complications 17: 349-354. https://doi.org/10.1016/S1056-8727(02)00171-X
  27. Fuhrman B, Judith O, Keidar S, Ben-Yaish L, Kaplan M, Aviram M. 1997. Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of a further progressive oxidation of LDL. Free Radic Biol Med 23: 34-46. https://doi.org/10.1016/S0891-5849(96)00588-6
  28. Pérez-Jiménez F, López-Miranda J, Mata P. 2002. Protective effect of dietary monounsaturated fat on arteriosclerosis: beyond cholesterol. Atherosclerosis 163: 385-398. https://doi.org/10.1016/S0021-9150(02)00033-3
  29. Rosenblat M, Oren R, Aviram M. 2006. Lysophosphatidylcholine (LPC) attenuates macrophage-mediated oxidation of LDL. Biochem Biophys Res Commun 344: 1271-1277. https://doi.org/10.1016/j.bbrc.2006.04.038
  30. Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM Jr, Boerwinkle E. 1997. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 96 : 4219-4225. https://doi.org/10.1161/01.CIR.96.12.4219
  31. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. 1993. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 13: 197-204. https://doi.org/10.1161/01.ATV.13.2.197
  32. Utsumi K, Kawabe M, Hirama A, Ueda K, Kamada Y, Arii K, Komaba Y, Katsura K, Iino Y, Katayama Y. 2007. Effects of selective LDL apheresis on plasma concentrations of ICAM-1, VCAM-1 and P-selectin in diabetic patients with arteriosclerosis obliterans and receiving maintenance hemodialysis. Clin Chim Acta 377: 198-200. https://doi.org/10.1016/j.cca.2006.09.026
  33. Schmidt A, Goepfert C, Feitsma K, Buddecke E. 2002. Lovastatin-stimulated superinduction of E-selectin, ICAM-1 and VCAM-1 in TNF-alpha activated human vascular endothelial cells. Atherosclerosis 164: 57-64. https://doi.org/10.1016/S0021-9150(02)00053-9
  34. Choi KH, Shon JH, Choi IS, Choi YJ, Bae SJ, Kim MH. 2007. The effect of mulberry fruits extracts on blood flow improvement in ovariectomized rats. J Life Sci 17: 575-580. https://doi.org/10.5352/JLS.2007.17.4.575
  35. Koenig W, Sund M, Frohlich M, Fischer HG, Lowel H, Doring A, Hutchinson WL, Pepys MB. 1999. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middleaged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99: 237-242. https://doi.org/10.1161/01.CIR.99.2.237
  36. Mendall MA, Strachan DP, Butland BK, Ballam L, Morris J, Sweetnam PM, Elwood PC. 2000. C-Reactive protein: relation to total mortality, cardiovascular mortality, and cardiovascular risk factors in men. Eur Heart J 21: 1584-1590. https://doi.org/10.1053/euhj.1999.1982
  37. Biasucci LM, Liuzzo G, Grillo RL, Caligiuri G, Rebuzzi AG, Buffon A, Summaria F, Ginnetti F, Fadda G, Maseri A. 1999. Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation 99: 855-860. https://doi.org/10.1161/01.CIR.99.7.855
  38. Tracy RP, Lemaitre RN, Psaty BM, Ives DG, Evans RW, Cushman M, Meilahn EN, Kuller LH. 1997. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly: results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler Thromb Vasc Biol 17: 1121-1127. https://doi.org/10.1161/01.ATV.17.6.1121
  39. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH. 1998. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98: 731-733. https://doi.org/10.1161/01.CIR.98.8.731
  40. Danenberg HD, Szalai AJ, Swaminathan RV, Peng L, Chen Z, Seifert P, Fay WP, Simon DI, Edelman ER. 2003. Increased thrombosis after arterial injury in human C-reactive protein-transgenic mice. Circulation 108: 512-515. https://doi.org/10.1161/01.CIR.0000085568.13915.1E

Cited by

  1. Protective effects of mulberry (Morus alba) sugar extracts on hydrogen peroxide-induced oxidative stress in HepG2 cell vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.751
  2. Diels-Alder type adducts from the fruits ofMorus albaL. vol.59, pp.2, 2016, https://doi.org/10.3839/jabc.2016.016
  3. Anti-inflammatory Effect of Lactuca sativa L. Extract in Human Umbilical Vein Endothelial Cells and Improvement of Lipid Levels in Mice Fed a High-fat Diet vol.29, pp.6, 2016, https://doi.org/10.9799/ksfan.2016.29.6.998
  4. Comparison of the Cholesterol-lowering Effects between Loquat Leaf and Fruit Extract in Rats Fed a High-cholesterol Diet vol.29, pp.4, 2014, https://doi.org/10.7856/kjcls.2018.29.4.495
  5. 2016년 제7차 국민건강영양조사를 이용한 이상지질혈증 유무 및 형태에 따른 식품섭취행태 차이 분석 vol.34, pp.6, 2014, https://doi.org/10.7318/kjfc/2019.34.6.748
  6. Mulberry Fruit Extract Promotes Serum HDL-Cholesterol Levels and Suppresses Hepatic microRNA-33 Expression in Rats Fed High Cholesterol/Cholic Acid Diet vol.12, pp.5, 2014, https://doi.org/10.3390/nu12051499