DOI QR코드

DOI QR Code

RCP 배출 시나리오와 SWAT 모형을 이용한 기후변화가 용담댐 유역의 수문요소에 미치는 영향 평가

Assessing Climate Change Impact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT Model

  • 박종윤 (건국대학교 사회환경시스템공학과) ;
  • 정혁 (건국대학교 사회환경시스템공학과) ;
  • 장철희 (한국건설기술연구원 수자원연구실) ;
  • 김성준 (건국대학교 사회환경시스템공학과)
  • 투고 : 2013.09.04
  • 심사 : 2014.04.23
  • 발행 : 2014.05.31

초록

This study was to evaluate the potential climate change impact on watershed hydrological components of evapotranspiration, surface runoff, lateral flow, return flow, and streamflow using Soil and Water Assessment Tool (SWAT). For Yongdam dam watershed (930 $km^2$), the SWAT model was calibrated for five years (2002-2006) and validated for three years (2004-2006) using daily streamflow data at three locations and daily soil moisture data at five locations. The Nash-Sutcliffe model efficiency (NSE) and coefficient of determination ($R^2$) were 0.43-0.67 and 0.48-0.70 for streamflow, and 0.16-0.65 and 0.27-0.76 for soil moisture, respectively. For future evaluation, the HadGEM3-RA climate data by Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios were adopted. The biased future data were corrected using 30 years (1982-2011, baseline period) of ground weather data. The HadGEM3-RA 2080s (2060-2099) temperature and precipitation showed increase of $+4.7^{\circ}C$ and +22.5 %, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, surface runoff, baseflow, and streamflow showed changes of +11.8 %, +36.8 %, +20.5 %, and +29.2 %, respectively. Overall, the future hydrologic results by RCP emission scenarios showed increase patterns due to the overall increase of future temperature and precipitation.

키워드

참고문헌

  1. Ahn, S. R., G. A. Park, C. H. Jang, and S. J. Kim, 2013. Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model. Journal of Korea Water Resources Association 46(6): 569-583 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.6.569
  2. Alcamo, J., P. Doll, F. Kaspar, and S. Siebert, 1997. Global change and global scenarios of water use and availability: An application of Water GAP 1.0. Report A9701. Kassel, Germany: University of Kassel, Center for Environmental Systems Research.
  3. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration, Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome.
  4. Ambroise, B., J. L. Perrin, and D. Reutenauer, 1995. Multicriterion validations of a semidistributed conceptual model of the water cycle in the Fecht catchment, Vosges, Massif. France. Water Resources Research 31: 1467-1481. https://doi.org/10.1029/94WR03293
  5. Arnold, J. G., and P. M. Allen, 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology 176(1): 57-77. https://doi.org/10.1016/0022-1694(95)02782-3
  6. Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998. Large area hydrologic modeling and assessment part I: model development. Journal of American Water Resources Association 34(1): 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  7. Bastidas, L. A., H. V. Gupta, K. Hsu, and S. Sorooshian, 2003. Parameter, structure, and model performance evaluation for land-surface schemes. Water Science and Applications 6: 239-254. https://doi.org/10.1029/WS006p0239
  8. Carter, T. R., M. Hulme, and M. Lal, 1999. IPCC-TGCIA guidelines on the use of scenario data for climate change impact and adaptation assessment. version 1, IPCC, Task Group on Scenarios for Impact Assessment.
  9. Chow, V. T., D. R. Maidment, and L. W. Mays, 1988. Applied Hydrology. McGraw-Hill, NY.
  10. Cunge, J. A., 1969. On the subject of a flood propagation method (Muskingum method). Journal of Hydraulics Research 7(2): 205-230. https://doi.org/10.1080/00221686909500264
  11. Hong, W. Y., M. J. Park, J. Y. Park, R. Ha, G. A. Park, and S. J. Kim, 2009. The correlation analysis between SWAT predicted forest soil moisture and MODIS NDVI during spring season. Journal of the Korean Society of Agricultural Engineers 51(2): 7-14 (in Korean). https://doi.org/10.5389/KSAE.2009.51.2.007
  12. IPCC, 2012. Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. Intergovernmental Panel on Climate Change, Expert Meeting Report.
  13. IPCC, 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  14. Jang, J. S., 2003. Introduction of hydrologic models and parameters. Korea National Committee on Irrigation and Drainage 10(1): 95-102 (in Korean).
  15. Joh, H. K., J. W. Lee, H. J. Shin, G. A. Park, and S. J. Kim, 2010. Evaluation of evapotranspiration and soil moisture of SWAT simulation for mixed forest in the Seolmacheon catchment. Korean Journal of Agricultural and Forest Meteorology 12(4): 289-297 (in Korean). https://doi.org/10.5532/KJAFM.2010.12.4.289
  16. Jung, H. K., S. J. Kim, and R. Ha, 2013. Assessment of Climate Change Impact on Storage Behavior of Chungju and the Regulation Dams Using SWAT Model, Journal of Korea Water Resources Association 46(12): 1235-1247 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.12.1235
  17. Kim, N. W., J. E. Lee, I. M. Chung, and D. P. Kim, 2008. Hydrologic component analysis of the Seolma-Cheon watershed by using SWAT-K model. Journal of the Environmental Sciences 17(12): 1363-1372 (in Korean). https://doi.org/10.5322/JES.2008.17.12.1363
  18. Koren, V., F. Moreda, and M. Smith, 2008. Use of soil moisture observations to improve parameter consistency in watershed calibration. Physics and Chemistry of the Earth 33: 1068-1080. https://doi.org/10.1016/j.pce.2008.01.003
  19. Kuczera, G., and M. Mroczkowski, 1998. Assessment of hydrological parameter uncertainty and the worth of multi-response data. Water Resources Research 34: 1481-1489. https://doi.org/10.1029/98WR00496
  20. K-water, 2008. Experimental watershed in Yongdam dam basin. Daejeon, Republic of Korea: K-Water. Available at: http://www.ydew.or.kr.
  21. Lee, B. R., S. K. Kang, E. S., Kim, T. H. Hwang, J. H. Lim, and J. Kim, 2007. Evaluation of a hydro-ecologic model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and application at two complex terrain watersheds. Korean Journal of Agricultural and Forest Meteorology 9(4): 247-259 (in Korean). https://doi.org/10.5532/KJAFM.2007.9.4.247
  22. Lee, Y. J., S. R. Ahn, B. S. Kang, and S. J. Kim, 2008. Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II). Journal of Korea Society of Civil Engineers 8(6B): 665-673 (in Korean).
  23. Manguerra, H. B., and B. A. Engel, 1998. Hydrologic parameterization of watersheds for runoff prediction using SWAT. Journal of the American Resources Association 34(5): 1149-1162. https://doi.org/10.1111/j.1752-1688.1998.tb04161.x
  24. MLTM, 2006. Water vision 2020. Ministry of Land, Transportation and Maritime Affairs, Korea (in Korean).
  25. Nash, J. E., and J. E. Sutcliffe, 1970. River flow forecasting though conceptual models: Part I, A discussion of principles. Journal of Hydrology 10(3): 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  26. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, J. R. Williams, and K. W. King, 2002. Soil and Water Assessment Tool: Theoretical documentation, Version 2000. TWRI Report TR-191. College Station, TX.: Texas Water Resources Institute.
  27. NIMR, 2011. Climate change scenario report 2011 to respond to the IPCC 5th Assessment Report. National Institute of Meteorological Research, Korea (in Korean).
  28. Park, J. Y., M. J. Park, H. K. Joh, H. J. Shin, H. J. Kwon, R. Srinivasan, and S. J. Kim, 2011. Assessment of MIROC3.2 HiRes climate and CLUE-s land use change impacts on watershed hydrology using SWAT. Transactions of the ASABE 54(5): 1713-1724. https://doi.org/10.13031/2013.39842
  29. Park, J. Y., M. J. Park, S. R. Ahn, and S. J. Kim, 2009. Watershed modeling for assessing climate change impact on stream water quality of Chungju dam watershed. Journal of Korea Water Resources Association 42(10): 877-889 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.10.877
  30. Peterson, J. R., and J. M. Hamlett, 1998. Hydrologic calibration of the SWAT model in a watershed containing fragipan soils. Journal of the American Water Resources Association 34(3): 531-544. https://doi.org/10.1111/j.1752-1688.1998.tb00952.x
  31. Saxton, K. E., W. J. Rawls, J. S. Romberger, and R. I. Papendick, 1986. Estimating generalized soil-water characteristics from texture. Soil Science of America Journal 50(4): 1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
  32. Soil Survey Staff, 1996. National Soil Survey Handbook. Title 430-VI, USDA Natural Resources Conservation Service, U.S. Government Printing Office, Washington, DC.
  33. Sophocleous, M. A., J. K. Koelliker, R. S. Govindaraju, T. Birdie, S. R. Ramireddygari, and S. P. Perkins, 1999. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in South-Central Kansas. Journal of Hydrology 214(1): 179-196. https://doi.org/10.1016/S0022-1694(98)00289-3
  34. USDA-SCS, 1972. Section 4: Hydrology. In National Engineering Handbook. Washington, D.C.: USDA Soil Conservation Service.