참고문헌
- Billard, L. and Diday, E. (2006). Symbolic Data Analysis: Conceptual Statistics and Data Mining, Wiley, Chichester.
- Bock, H. H. and Diday, E. (2000). Analysis of Symbolic Data, Springer, Berlin Heidelberg.
- Diday, E. and Brito, M. P. (1989). Symbolic Cluster Analysis, In: Optiz, Otto (eds.), Conceptual and Numerical Analysis of Data, 45-84, Springer, Berlin Heidelberg.
- Diday, E. and Noirhomme-Fraiture, M. (2008). Symbolic Data Analysis and the SODAS Software, Wiley-Interscience.
- Diday, E. and Vrac, M. (2005). Mixture decomposition of distributions by copulas in the symbolic data analysis framework, Discrete Applied Mathematics, 147, 27-41, Elsevier Science Publishers B. V, Amsterdam. https://doi.org/10.1016/j.dam.2004.06.018
- Huh, M. H. (2002). Setting the Number of Clusters in K-Means Clustering, In: Baba, Y., Hayter, A. J., Kanefuji, K. and Kuriki, S. (eds.), Recent Advances in Statistical Research and Data Analysis, 115-124, Springer, Tokyo.
- Katayama, K., Minami, H. and Mizuta, M. (2009). Hierarchical symbolic clustering for distribution valued data, Journal of the Japanese Society of Computational Statistics, 22, 83-89 (In Japanese).
- Matsui, Y., Komiya, Y., Minami, H. and Mizuta, M. (2013). Comparison of Two Distribution Valued Dissimilarities and Its Application for Symbolic Clustering, In: Gaul, W., Geyer-Schulz, A., Baba, Y. and Okada, A. (eds.), German-Japanese Interchange of Data Analysis Results. Studies in Classification, Data Analysis, and Knowledge Organization. (to appear), Springer, Heidelberg.
- Matsui, Y., Minami, H. and Mizuta, M. (2013). Symbolic Cluster Analysis for Distribution Valued Data, In: Cho, S. H. (eds.), Proceedings of Joint Meeting of the IASC Satellite Conference and the 8th Conference of the Asian Regional Section of the IASC, 305-310, Aug. 22-23, 2013, Yonsei University, Seoul, Korea.
- Mizuta, M. and Minami, H. (2012). Analysis of Distribution Valued Dissimilarity Data. In: Gaul, W. A., Geyer-Schulz, A., Schmidt-Thieme, L. and Kunze, J., Challenges at the Interface of Data Analysis, Computer Science, and Optimization, Studies in Classification, Data Analysis, and Knowledge Organization, 23-28, Springer, Heidelberg.
- Schweizer, B. (1968). Distributions are the numbers of the future, Proceedings section Napoli Meeting on "The mathematics of fuzzy systems", 137-149, Instituto di Mathematica delle Faculta di Achitectura, Universita degli studi di Napoli.
- Terada, Y. and Yadohisa, H. (2010). Non-hierarchical clustering for distribution-valued data, COMPSTAT 2010: Proceedings in Computational Statistics, 1653-1660, Psysica-Verlag, Heidelberg.