DOI QR코드

DOI QR Code

Metabolism of Very Long-Chain Fatty Acids: Genes and Pathophysiology

  • Sassa, Takayuki (Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University) ;
  • Kihara, Akio (Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University)
  • Received : 2014.02.10
  • Accepted : 2014.03.03
  • Published : 2014.03.31

Abstract

Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.

Keywords

References

  1. Abe, K., Ohno, Y., Sassa, T., Taguchi, R., Caliskan, M., Ober, C. and Kihara, A. (2013) Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile. J. Biol. Chem. 288, 36741-36749. https://doi.org/10.1074/jbc.M113.493221
  2. Agbaga, M. P., Mandal, M. N. and Anderson, R. E. (2010) Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J. Lipid Res. 51, 1624-1642. https://doi.org/10.1194/jlr.R005025
  3. Akiyama, M. (2014) The roles of ABCA12 in epidermal lipid barrier formation and keratinocyte differentiation. Biochim. Biophys. Acta 1841, 435-440. https://doi.org/10.1016/j.bbalip.2013.08.009
  4. Akiyama, M., Sugiyama-Nakagiri, Y., Sakai, K., McMillan, J. R., Goto, M., Arita, K., Tsuji-Abe, Y., Tabata, N., Matsuoka, K., Sasaki, R., Sawamura, D. and Shimizu, H. (2005) Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J. Clin. Invest. 115, 1777-1784. https://doi.org/10.1172/JCI24834
  5. Aldahmesh, M. A., Mohamed, J. Y., Alkuraya, H. S., Verma, I. C., Puri, R. D., Alaiya, A. A., Rizzo, W. B. and Alkuraya, F. S. (2011) Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am. J. Hum. Genet. 89, 745-750. https://doi.org/10.1016/j.ajhg.2011.10.011
  6. Alderson, N. L., Maldonado, E. N., Kern, M. J., Bhat, N. R. and Hama, H. (2006) FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain. J. Lipid Res. 47, 2772-2780. https://doi.org/10.1194/jlr.M600362-JLR200
  7. Aveldano, M. I. and Sprecher, H. (1987) Very long chain ($C_{24}\;to\;C_{36}$) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J. Biol. Chem. 262, 1180-1186.
  8. Bannenberg, G. and Serhan, C. N. (2010) Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim. Biophys. Acta 1801, 1260-1273. https://doi.org/10.1016/j.bbalip.2010.08.002
  9. Bazan, N. G., Calandria, J. M. and Serhan, C. N. (2010) Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J. Lipid Res. 51, 2018-2031. https://doi.org/10.1194/jlr.R001131
  10. Becker, I., Wang-Eckhardt, L., Yaghootfam, A., Gieselmann, V. and Eckhardt, M. (2008) Differential expression of (dihydro)ceramide synthases in mouse brain: oligodendrocyte-specific expression of CerS2/Lass2. Histochem. Cell Biol. 129, 233-241. https://doi.org/10.1007/s00418-007-0344-0
  11. Berger, J., Pujol, A., Aubourg, P. and Forss-Petter, S. (2010) Current and future pharmacological treatment strategies in X-linked adrenoleukodystrophy. Brain Pathol. 20, 845-856. https://doi.org/10.1111/j.1750-3639.2010.00393.x
  12. Breiden, B. and Sandhoff, K. (2014) The role of sphingolipid metabolism in cutaneous permeability barrier formation. Biochim. Biophys. Acta 1841, 441-452. https://doi.org/10.1016/j.bbalip.2013.08.010
  13. Butovich, I. A. (2010) Fatty acid composition of cholesteryl esters of human meibomian gland secretions. Steroids 75, 726-733. https://doi.org/10.1016/j.steroids.2010.04.011
  14. Butovich, I. A. (2013) Tear film lipids. Exp. Eye Res. 117, 4-27. https://doi.org/10.1016/j.exer.2013.05.010
  15. Butovich, I. A., Wojtowicz, J. C. and Molai, M. (2009) Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum. J. Lipid Res. 50, 2471-2485. https://doi.org/10.1194/jlr.M900252-JLR200
  16. Caliskan, M., Chong, J. X., Uricchio, L., Anderson, R., Chen, P., Sougnez, C., Garimella, K., Gabriel, S. B., dePristo, M. A., Shakir, K., Matern, D., Das, S., Waggoner, D., Nicolae, D. L. and Ober, C. (2011) Exome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13. Hum. Mol. Genet. 20, 1285-1289. https://doi.org/10.1093/hmg/ddq569
  17. Donoso, L. A., Edwards, A. O., Frost, A., Vrabec, T., Stone, E. M., Hageman, G. S. and Perski, T. (2001) Autosomal dominant Stargardtlike macular dystrophy. Surv. Ophthalmol. 46, 149-163. https://doi.org/10.1016/S0039-6257(01)00251-X
  18. Eckl, K. M., Tidhar, R., Thiele, H., Oji, V., Hausser, I., Brodesser, S., Preil, M. L., Onal-Akan, A., Stock, F., Muller, D., Becker, K., Casper, R., Nurnberg, G., Altmuller, J., Nurnberg, P., Traupe, H., Futerman, A. H. and Hennies, H. C. (2013) Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length. J. Invest. Dermatol. 133, 2202-2211. https://doi.org/10.1038/jid.2013.153
  19. Edvardson, S., Hama, H., Shaag, A., Gomori, J. M., Berger, I., Soffer, D., Korman, S. H., Taustein, I., Saada, A. and Elpeleg, O. (2008) Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am. J. Hum. Genet. 83, 643-648. https://doi.org/10.1016/j.ajhg.2008.10.010
  20. Ejsing, C. S., Sampaio, J. L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R. W., Simons, K. and Shevchenko, A. (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 106, 2136-2141. https://doi.org/10.1073/pnas.0811700106
  21. Elias, P. M., Williams, M. L. and Feingold, K. R. (2012) Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders. Clin. Dermatol. 30, 311-322. https://doi.org/10.1016/j.clindermatol.2011.08.017
  22. Engelen, M., Tran, L., Ofman, R., Brennecke, J., Moser, A. B., Dijkstra, I. M., Wanders, R. J., Poll-The, B. T. and Kemp, S. (2012) Bezafibrate for X-linked adrenoleukodystrophy. PLoS One 7, e41013. https://doi.org/10.1371/journal.pone.0041013
  23. Furland, N. E., Oresti, G. M., Antollini, S. S., Venturino, A., Maldonado, E. N. and Aveldano, M. I. (2007a) Very long-chain polyunsaturated fatty acids are the major acyl groups of sphingomyelins and ceramides in the head of mammalian spermatozoa. J. Biol. Chem. 282, 18151-18161. https://doi.org/10.1074/jbc.M700709200
  24. Furland, N. E., Zanetti, S. R., Oresti, G. M., Maldonado, E. N. and Aveldano, M. I. (2007b) Ceramides and sphingomyelins with high proportions of very long-chain polyunsaturated fatty acids in mammalian germ cells. J. Biol. Chem. 282, 18141-18150. https://doi.org/10.1074/jbc.M700708200
  25. Ginkel, C., Hartmann, D., vom Dorp, K., Zlomuzica, A., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., Rabionet, M., Dere, E., Dormann, P., Sandhoff, K. and Willecke, K. (2012) Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J. Biol. Chem. 287, 41888-41902. https://doi.org/10.1074/jbc.M112.413500
  26. Guillou, H., Zadravec, D., Martin, P. G. and Jacobsson, A. (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 49, 186-199. https://doi.org/10.1016/j.plipres.2009.12.002
  27. Hama, H. (2010) Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. Acta 1801, 405-414. https://doi.org/10.1016/j.bbalip.2009.12.004
  28. Harkewicz, R., Du, H., Tong, Z., Alkuraya, H., Bedell, M., Sun, W., Wang, X., Hsu, Y. H., Esteve-Rudd, J., Hughes, G., Su, Z., Zhang, M., Lopes, V. S., Molday, R. S., Williams, D. S., Dennis, E. A. and Zhang, K. (2012) Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function. J. Biol. Chem. 287, 11469-11480. https://doi.org/10.1074/jbc.M111.256073
  29. Ikeda, M., Kanao, Y., Yamanaka, M., Sakuraba, H., Mizutani, Y., Igarashi, Y. and Kihara, A. (2008) Characterization of four mammalian 3-hydroxyacyl-CoA dehydratases involved in very long-chain fatty acid synthesis. FEBS Lett. 582, 2435-2440. https://doi.org/10.1016/j.febslet.2008.06.007
  30. Imgrund, S., Hartmann, D., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., Gieselmann, V., Sandhoff, K. and Willecke, K. (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J. Biol. Chem. 284, 33549-33560. https://doi.org/10.1074/jbc.M109.031971
  31. Iwabuchi, K., Prinetti, A., Sonnino, S., Mauri, L., Kobayashi, T., Ishii, K., Kaga, N., Murayama, K., Kurihara, H., Nakayama, H., Yoshizaki, F., Takamori, K., Ogawa, H. and Nagaoka, I. (2008) Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj. J. 25, 357-374. https://doi.org/10.1007/s10719-007-9084-6
  32. Jakobsson, A., Westerberg, R. and Jacobsson, A. (2006) Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45, 237-249. https://doi.org/10.1016/j.plipres.2006.01.004
  33. Jennemann, R., Rabionet, M., Gorgas, K., Epstein, S., Dalpke, A., Rothermel, U., Bayerle, A., van der Hoeven, F., Imgrund, S., Kirsch, J., Nickel, W., Willecke, K., Riezman, H., Grone, H. J. and Sandhoff, R. (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586-608. https://doi.org/10.1093/hmg/ddr494
  34. Karan, G., Yang, Z., Howes, K., Zhao, Y., Chen, Y., Cameron, D. J., Lin, Y., Pearson, E. and Zhang, K. (2005) Loss of ER retention and sequestration of the wild-type ELOVL4 by Stargardt disease dominant negative mutants. Mol. Vis. 11, 657-664.
  35. Kasahara, K. and Sanai, Y. (2000) Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj. J. 17, 153-162. https://doi.org/10.1023/A:1026576804247
  36. Kemp, S., Berger, J. and Aubourg, P. (2012) X-linked adrenoleukodystrophy: Clinical, metabolic, genetic and pathophysiological aspects. Biochim. Biophys. Acta 1822, 1465-1474. https://doi.org/10.1016/j.bbadis.2012.03.012
  37. Korb, D. R. and Blackie, C. A. (2008) Meibomian gland diagnostic expressibility: correlation with dry eye symptoms and gland location. Cornea 27, 1142-1147. https://doi.org/10.1097/ICO.0b013e3181814cff
  38. Li, D., Gonzalez, O., Bachinski, L. L. and Roberts, R. (2000) Human protein tyrosine phosphatase-like gene: expression profile, genomic structure, and mutation analysis in families with ARVD. Gene 256, 237-243. https://doi.org/10.1016/S0378-1119(00)00347-4
  39. Li, W., Sandhoff, R., Kono, M., Zerfas, P., Hoffmann, V., Ding, B. C., Proia, R. L. and Deng, C. X. (2007) Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice. Int. J. Biol. Sci. 3, 120-128.
  40. Lin, D. S., Connor, W. E., Wolf, D. P., Neuringer, M. and Hachey, D. L. (1993) Unique lipids of primate spermatozoa: desmosterol and docosahexaenoic acid. J. Lipid Res. 34, 491-499.
  41. Masukawa, Y., Narita, H., Shimizu, E., Kondo, N., Sugai, Y., Oba, T., Homma, R., Ishikawa, J., Takagi, Y., Kitahara, T., Takema, Y. and Kita, K. (2008) Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 49, 1466-1476. https://doi.org/10.1194/jlr.M800014-JLR200
  42. Matsuzaka, T., Shimano, H., Yahagi, N., Kato, T., Atsumi, A., Yamamoto, T., Inoue, N., Ishikawa, M., Okada, S., Ishigaki, N., Iwasaki, H., Iwasaki, Y., Karasawa, T., Kumadaki, S., Matsui, T., Sekiya, M., Ohashi, K., Hasty, A. H., Nakagawa, Y., Takahashi, A., Suzuki, H., Yatoh, S., Sone, H., Toyoshima, H., Osuga, J. and Yamada, N. (2007) Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat. Med. 13, 1193-1202. https://doi.org/10.1038/nm1662
  43. Mizutani, Y., Kihara, A., Chiba, H., Tojo, H. and Igarashi, Y. (2008) 2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length. J. Lipid Res. 49, 2356-2364. https://doi.org/10.1194/jlr.M800158-JLR200
  44. Mizutani, Y., Mitsutake, S., Tsuji, K., Kihara, A. and Igarashi, Y. (2009) Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91, 784-790. https://doi.org/10.1016/j.biochi.2009.04.001
  45. Mizutani, Y., Sun, H., Ohno, Y., Sassa, T., Wakashima, T., Obara, M., Yuyama, K., Kihara, A. and Igarashi, Y. (2013) Cooperative synthesis of ultra long-chain fatty acid and ceramide during keratinocyte differentiation. PLoS One 8, e67317. https://doi.org/10.1371/journal.pone.0067317
  46. Moon, Y. A., Hammer, R. E. and Horton, J. D. (2009) Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J. Lipid Res. 50, 412-423. https://doi.org/10.1194/jlr.M800383-JLR200
  47. Moon, Y. A. and Horton, J. D. (2003) Identification of two mammalian reductases involved in the two-carbon fatty acyl elongation cascade. J. Biol. Chem. 278, 7335-7343. https://doi.org/10.1074/jbc.M211684200
  48. Moon, Y. A., Shah, N. A., Mohapatra, S., Warrington, J. A. and Horton, J. D. (2001) Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 276, 45358-45366. https://doi.org/10.1074/jbc.M108413200
  49. Morita, M. and Imanaka, T. (2012) Peroxisomal ABC transporters: structure, function and role in disease. Biochim. Biophys. Acta 1822, 1387-1396. https://doi.org/10.1016/j.bbadis.2012.02.009
  50. Morrow, M. R., Singh, D., Lu, D. and Grant, C. W. (1995) Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects. Biophys. J. 68, 179-186. https://doi.org/10.1016/S0006-3495(95)80173-6
  51. Mosser, J., Douar, A. M., Sarde, C. O., Kioschis, P., Feil, R., Moser, H., Poustka, A. M., Mandel, J. L. and Aubourg, P. (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361, 726-730. https://doi.org/10.1038/361726a0
  52. Muhammad, E., Reish, O., Ohno, Y., Scheetz, T., DeLuca, A., Searby, C., Regev, M., Benyamini, L., Fellig, Y., Kihara, A., Sheffield, V. C. and Parvari, R. (2013) Congenital myopathy is caused by mutation of HACD1. Hum. Mol. Genet. 22, 5229-5236. https://doi.org/10.1093/hmg/ddt380
  53. Mukherjee, P. K., Marcheselli, V. L., de Rivero Vaccari, J. C., Gordon, W. C., Jackson, F. E. and Bazan, N. G. (2007) Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 13158-13163. https://doi.org/10.1073/pnas.0705963104
  54. Naganuma, T., Sato, Y., Sassa, T., Ohno, Y. and Kihara, A. (2011) Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett. 585, 3337-3341. https://doi.org/10.1016/j.febslet.2011.09.024
  55. Obara, K., Kojima, R. and Kihara, A. (2013) Effects on vesicular transport pathways at the late endosome in cells with limited very long-chain fatty acids. J. Lipid Res. 54, 831-842. https://doi.org/10.1194/jlr.M034678
  56. Ofman, R., Dijkstra, I. M., van Roermund, C. W., Burger, N., Turkenburg, M., van Cruchten, A., van Engen, C. E., Wanders, R. J. and Kemp, S. (2010) The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol. Med. 2, 90-97. https://doi.org/10.1002/emmm.201000061
  57. Ohashi, Y., Dogru, M. and Tsubota, K. (2006) Laboratory findings in tear fluid analysis. Clin. Chim. Acta 369, 17-28. https://doi.org/10.1016/j.cca.2005.12.035
  58. Ohno, Y., Suto, S., Yamanaka, M., Mizutani, Y., Mitsutake, S., Igarashi, Y., Sassa, T. and Kihara, A. (2010) ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc. Natl. Acad. Sci. U.S.A. 107, 18439-18444. https://doi.org/10.1073/pnas.1005572107
  59. Oji, V., Tadini, G., Akiyama, M., Blanchet Bardon, C., Bodemer, C., Bourrat, E., Coudiere, P., DiGiovanna, J. J., Elias, P., Fischer, J., Fleckman, P., Gina, M., Harper, J., Hashimoto, T., Hausser, I., Hennies, H. C., Hohl, D., Hovnanian, A., Ishida-Yamamoto, A., Jacyk, W. K., Leachman, S., Leigh, I., Mazereeuw-Hautier, J., Milstone, L., Morice-Picard, F., Paller, A. S., Richard, G., Schmuth, M., Shimizu, H., Sprecher, E., Van Steensel, M., Taieb, A., Toro, J. R., Vabres, P., Vahlquist, A., Williams, M. and Traupe, H. (2010) Revised nomenclature and classification of inherited ichthyoses: results of the first ichthyosis consensus conference in soreze 2009. J. Am. Acad. Dermatol. 63, 607-641. https://doi.org/10.1016/j.jaad.2009.11.020
  60. Okuda, A., Naganuma, T., Ohno, Y., Abe, K., Yamagata, M., Igarashi, Y. and Kihara, A. (2010) Hetero-oligomeric interactions of an ELOVL4 mutant protein: implications in the molecular mechanism of Stargardt-3 macular dystrophy. Mol. Vis. 16, 2438-2445.
  61. Paintlia, A. S., Gilg, A. G., Khan, M., Singh, A. K., Barbosa, E. and Singh, I. (2003) Correlation of very long chain fatty acid accumulation and inflammatory disease progression in childhood X-ALD: implications for potential therapies. Neurobiol. Dis. 14, 425-439. https://doi.org/10.1016/j.nbd.2003.08.013
  62. Pele, M., Tiret, L., Kessler, J. L., Blot, S. and Panthier, J. J. (2005) SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum. Mol. Genet. 14, 1417-1427. https://doi.org/10.1093/hmg/ddi151
  63. Pewzner-Jung, Y., Brenner, O., Braun, S., Laviad, E. L., Ben-Dor, S., Feldmesser, E., Horn-Saban, S., Amann-Zalcenstein, D., Raanan, C., Berkutzki, T., Erez-Roman, R., Ben-David, O., Levy, M., Holzman, D., Park, H., Nyska, A., Merrill, A. H., Jr. and Futerman, A. H. (2010a) A critical role for ceramide synthase 2 in liver homeostasis: II. insights into molecular changes leading to hepatopathy. J. Biol. Chem. 285, 10911-10923. https://doi.org/10.1074/jbc.M109.077610
  64. Pewzner-Jung, Y., Park, H., Laviad, E. L., Silva, L. C., Lahiri, S., Stiban, J., Erez-Roman, R., Brugger, B., Sachsenheimer, T., Wieland, F., Prieto, M., Merrill, A. H., Jr. and Futerman, A. H. (2010b) A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J. Biol. Chem. 285, 10902-10910. https://doi.org/10.1074/jbc.M109.077594
  65. Poll-The, B. T., Roels, F., Ogier, H., Scotto, J., Vamecq, J., Schutgens, R. B., Wanders, R. J., van Roermund, C. W., van Wijland, M. J., Schram, A. W., Tagar, J. M. and Saudubray J. M. (1988) A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am. J. Hum. Genet. 42, 422-434.
  66. Poulos, A., Sharp, P., Johnson, D. and Easton, C. (1988) The occurrence of polyenoic very long chain fatty acids with greater than 32 carbon atoms in molecular species of phosphatidylcholine in normal and peroxisome-deficient (Zellweger's syndrome) brain. Biochem. J. 253, 645-650. https://doi.org/10.1042/bj2530645
  67. Proksch, E., Brandner, J. M. and Jensen, J. M. (2008) The skin: an indispensable barrier. Exp. Dermatol. 17, 1063-1072. https://doi.org/10.1111/j.1600-0625.2008.00786.x
  68. Prottey, C. (1977) Investigation of functions of essential fatty acids in the skin. Br. J. Dermatol. 97, 29-38. https://doi.org/10.1111/j.1365-2133.1977.tb15424.x
  69. Rabionet, M., Gorgas, K. and Sandhoff, R. (2014) Ceramide synthesis in the epidermis. Biochim. Biophys. Acta 1841, 422-434. https://doi.org/10.1016/j.bbalip.2013.08.011
  70. Rabionet, M., van der Spoel, A. C., Chuang, C. C., von Tumpling-Radosta, B., Litjens, M., Bouwmeester, D., Hellbusch, C. C., Korner, C., Wiegandt, H., Gorgas, K., Platt, F. M., Grone, H. J. and Sandhoff, R. (2008) Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J. Biol. Chem. 283, 13357-13369. https://doi.org/10.1074/jbc.M800870200
  71. Radner, F. P., Marrakchi, S., Kirchmeier, P., Kim, G. J., Ribierre, F., Kamoun, B., Abid, L., Leipoldt, M., Turki, H., Schempp, W., Heilig, R., Lathrop, M. and Fischer, J. (2013) Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans. PLoS Genet. 9, e1003536. https://doi.org/10.1371/journal.pgen.1003536
  72. Rizzo, W. B., Leshner, R. T., Odone, A., Dammann, A. L., Craft, D. A., Jensen, M. E., Jennings, S. S., Davis, S., Jaitly, R. and Sgro J. A. (1989) Dietary erucic acid therapy for X-linked adrenoleukodystrophy. Neurology 39, 1415-1422. https://doi.org/10.1212/WNL.39.11.1415
  73. Robinson, B. S., Johnson, D. W. and Poulos, A. (1990) Unique molecular species of phosphatidylcholine containing very-long-chain ($C_{24}-C_{38}$) polyenoic fatty acids in rat brain. Biochem. J. 265, 763-767. https://doi.org/10.1042/bj2650763
  74. Sandhoff, R., Geyer, R., Jennemann, R., Paret, C., Kiss, E., Yamashita, T., Gorgas, K., Sijmonsma, T. P., Iwamori, M., Finaz, C., Proia, R. L., Wiegandt, H. and Grone, H. J. (2005) Novel class of glycosphingolipids involved in male fertility. J. Biol. Chem. 280, 27310-27318. https://doi.org/10.1074/jbc.M502775200
  75. SanGiovanni, J. P. and Chew, E. Y. (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retin. Eye Res. 24, 87-138. https://doi.org/10.1016/j.preteyeres.2004.06.002
  76. Sassa, T., Ohno, Y., Suzuki, S., Nomura, T., Nishioka, C., Kashiwagi, T., Hirayama, T., Akiyama, M., Taguchi, R., Shimizu, H., Itohara, S. and Kihara, A. (2013) Impaired epidermal permeability barrier in mice lacking Elovl1, the gene responsible for very-long-chain fatty acid production. Mol. Cell. Biol. 33, 2787-2796. https://doi.org/10.1128/MCB.00192-13
  77. Sassa, T., Suto, S., Okayasu, Y. and Kihara, A. (2012) A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim. Biophys. Acta 1821, 1031-1037. https://doi.org/10.1016/j.bbalip.2012.04.008
  78. Sassa, T., Wakashima, T., Ohno, Y. and Kihara, A. (2014) Lorenzo's oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturated very long-chain fatty acid. J. Lipid Res., 55, 524-530. https://doi.org/10.1194/jlr.M044586
  79. Sastry, P. S. (1985) Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24, 69-176. https://doi.org/10.1016/0163-7827(85)90011-6
  80. Silva, L. C., Ben David, O., Pewzner-Jung, Y., Laviad, E. L., Stiban, J., Bandyopadhyay, S., Merrill, A. H., Jr., Prieto, M. and Futerman, A. H. (2012) Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J. Lipid Res. 53, 430-436. https://doi.org/10.1194/jlr.M022715
  81. Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569-572. https://doi.org/10.1038/42408
  82. Sonnino, S., Prinetti, A., Nakayama, H., Yangida, M., Ogawa, H. and Iwabuchi, K. (2009) Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj. J. 26, 615-621. https://doi.org/10.1007/s10719-008-9215-8
  83. t'Kindt, R., Jorge, L., Dumont, E., Couturon, P., David, F., Sandra, P. and Sandra, K. (2012) Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-offlight mass spectrometry. Anal. Chem. 84, 403-411. https://doi.org/10.1021/ac202646v
  84. Tidhar, R. and Futerman, A. H. (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2511-2518. https://doi.org/10.1016/j.bbamcr.2013.04.010
  85. Uauy, R., Hoffman, D. R., Peirano, P., Birch, D. G. and Birch, E. E. (2001) Essential fatty acids in visual and brain development. Lipids 36, 885-895. https://doi.org/10.1007/s11745-001-0798-1
  86. van Roermund, C. W., Visser, W. F., Ijlst, L., van Cruchten, A., Boek, M., Kulik, W., Waterham, H. R. and Wanders, R. J. (2008) The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J. 22, 4201-4208. https://doi.org/10.1096/fj.08-110866
  87. Vasireddy, V., Jablonski, M. M., Mandal, M. N., Raz-Prag, D., Wang, X. F., Nizol, L., Iannaccone, A., Musch, D. C., Bush, R. A., Salem, N., Jr., Sieving, P. A. and Ayyagari, R. (2006) Elovl4 5-bp-deletion knock-in mice develop progressive photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 47, 4558-4568. https://doi.org/10.1167/iovs.06-0353
  88. Vasireddy, V., Uchida, Y., Salem, N., Jr., Kim, S. Y., Mandal, M. N., Reddy, G. B., Bodepudi, R., Alderson, N. L., Brown, J. C., Hama, H., Dlugosz, A., Elias, P. M., Holleran, W. M. and Ayyagari, R. (2007) Loss of functional ELOVL4 depletes very long-chain fatty acids (${\geq}C28$) and the unique ${\omega}$-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 16, 471-482. https://doi.org/10.1093/hmg/ddl480
  89. Vasireddy, V., Wong, P. and Ayyagari, R. (2010) Genetics and molecular pathology of Stargardt-like macular degeneration. Prog. Retin. Eye Res. 29, 191-207. https://doi.org/10.1016/j.preteyeres.2010.01.001
  90. Wanders, R. J. (2014) Metabolic functions of peroxisomes in health and disease. Biochimie 98, 36-44. https://doi.org/10.1016/j.biochi.2013.08.022
  91. Watkins, P. A., McGuinness, M. C., Raymond, G. V., Hicks, B. A., Sisk, J. M., Moser, A. B. and Moser, H. W. (1995) Distinction between peroxisomal bifunctional enzyme and acyl-CoA oxidase deficiencies. Ann. Neurol. 38, 472-477. https://doi.org/10.1002/ana.410380322
  92. Westerberg, R., Tvrdik, P., Unden, A. B., Mansson, J. E., Norlen, L., Jakobsson, A., Holleran, W. H., Elias, P. M., Asadi, A., Flodby, P., Toftgard, R., Capecchi, M. R. and Jacobsson, A. (2004) Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J. Biol. Chem. 279, 5621-5629. https://doi.org/10.1074/jbc.M310529200
  93. Yamanaka, W. K., Clemans, G. W. and Hutchinson, M. L. (1980) Essential fatty acids deficiency in humans. Prog. Lipid Res. 19, 187-215. https://doi.org/10.1016/0163-7827(80)90004-1
  94. Zadravec, D., Tvrdik, P., Guillou, H., Haslam, R., Kobayashi, T., Napier, J. A., Capecchi, M. R. and Jacobsson, A. (2011) ELOVL2 controls the level of n-6 28:5 and 30:5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice. J. Lipid Res. 52, 245-255. https://doi.org/10.1194/jlr.M011346
  95. Zhang, K., Kniazeva, M., Han, M., Li, W., Yu, Z., Yang, Z., Li, Y., Metzker, M. L., Allikmets, R., Zack, D. J., Kakuk, L. E., Lagali, P. S., Wong, P. W., MacDonald, I. M., Sieving, P. A., Figueroa, D. J., Austin, C. P., Gould, R. J., Ayyagari, R. and Petrukhin, K. (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 27, 89-93.

Cited by

  1. Enzyme Activities of the Ceramide Synthases CERS2–6 Are Regulated by Phosphorylation in the C-terminal Region vol.291, pp.14, 2016, https://doi.org/10.1074/jbc.M115.695858
  2. Rapamycin Inhibits Expression of Elongation of Very-long-chain Fatty Acids 1 and Synthesis of Docosahexaenoic Acid in Bovine Mammary Epithelial Cells vol.29, pp.11, 2016, https://doi.org/10.5713/ajas.15.0660
  3. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways vol.292, pp.37, 2017, https://doi.org/10.1074/jbc.M117.803171
  4. Targeted metabolomic profiling indicates structure-based perturbations in serum phospholipids in children with acetaminophen overdose vol.3, 2016, https://doi.org/10.1016/j.toxrep.2016.08.004
  5. Functional Characterization of Two Elongases of Very Long-Chain Fatty Acid from Tenebrio molitor L. (Coleoptera: Tenebrionidae) vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-11134-y
  6. Two Modes of Regulation of the Fatty Acid Elongase ELOVL6 by the 3-Ketoacyl-CoA Reductase KAR in the Fatty Acid Elongation Cycle vol.9, pp.7, 2014, https://doi.org/10.1371/journal.pone.0101823
  7. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides vol.63, 2016, https://doi.org/10.1016/j.plipres.2016.04.001
  8. An optimized method for measuring fatty acids and cholesterol in stable isotope-labeled cells vol.58, pp.2, 2017, https://doi.org/10.1194/jlr.D069336
  9. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum vol.114, pp.13, 2017, https://doi.org/10.1073/pnas.1700138114
  10. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis vol.1861, pp.8, 2016, https://doi.org/10.1016/j.bbalip.2015.12.021
  11. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide vol.8, 2017, https://doi.org/10.1038/ncomms14610
  12. Dual Functions of theTrans-2-Enoyl-CoA Reductase TER in the Sphingosine 1-Phosphate Metabolic Pathway and in Fatty Acid Elongation vol.289, pp.36, 2014, https://doi.org/10.1074/jbc.M114.571869
  13. In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation vol.124, 2017, https://doi.org/10.1016/j.ymeth.2017.06.002
  14. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids 2017, https://doi.org/10.1002/1873-3468.12825
  15. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation vol.112, pp.25, 2015, https://doi.org/10.1073/pnas.1503491112
  16. ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy vol.133, pp.3, 2015, https://doi.org/10.1111/jnc.12992
  17. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing vol.37, pp.6, 2016, https://doi.org/10.1016/j.devcel.2016.05.015
  18. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats vol.15, pp.Suppl 12, 2014, https://doi.org/10.1186/1471-2164-15-S12-S3
  19. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans vol.64, 2016, https://doi.org/10.1016/j.plipres.2016.07.002
  20. Histological analyses by matrix-assisted laser desorption/ionization-imaging mass spectrometry reveal differential localization of sphingomyelin molecular species regulated by particular ceramide synthase in mouse brains vol.1851, pp.12, 2015, https://doi.org/10.1016/j.bbalip.2015.09.004
  21. Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Downregulates ELOVL1 Gene Expression and Fatty Acid Synthesis in Goat Fetal Fibroblasts vol.16, pp.7, 2015, https://doi.org/10.3390/ijms160716440
  22. Global assessment of oxidized free fatty acids in brain reveals an enzymatic predominance to oxidative signaling after trauma 2017, https://doi.org/10.1016/j.bbadis.2017.03.015
  23. Sphingolipids and their metabolism in physiology and disease vol.19, pp.3, 2017, https://doi.org/10.1038/nrm.2017.107
  24. 皮膚バリア機能に必須な脂質アシルセラミドの生合成機構の解明 vol.137, pp.10, 2017, https://doi.org/10.1248/yakushi.17-00126
  25. Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond vol.313, pp.4, 2017, https://doi.org/10.1152/ajpheart.00820.2016
  26. Serum lipids as an indicator for the alteration of liver function in patients with hepatitis B vol.17, pp.1, 2018, https://doi.org/10.1186/s12944-018-0683-y
  27. vol.61, pp.3, 2018, https://doi.org/10.1139/gen-2017-0224
  28. Integrated Systems Approach Reveals Sphingolipid Metabolism Pathway Dysregulation in Association with Late-Onset Alzheimer’s Disease vol.7, pp.1, 2018, https://doi.org/10.3390/biology7010016
  29. Aging extension and modifications of lipid metabolism in the monogonont rotifer Brachionus koreanus under chronic caloric restriction vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-20108-7
  30. Biochemical characterization of the PHARC-associated serine hydrolase ABHD12 reveals its preference for very-long-chain lipids vol.293, pp.44, 2018, https://doi.org/10.1074/jbc.RA118.005640
  31. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids vol.10, pp.11, 2018, https://doi.org/10.3390/nu10111662
  32. Circulating Very Long‐Chain Saturated Fatty Acids and Heart Failure: The Cardiovascular Health Study vol.7, pp.21, 2018, https://doi.org/10.1161/JAHA.118.010019
  33. Emerging roles for sphingolipids in cellular aging vol.64, pp.4, 2018, https://doi.org/10.1007/s00294-017-0799-z
  34. Characterization of Long-Chain Fatty Acid as N-(4-Aminomethylphenyl) Pyridinium Derivative by MALDI LIFT-TOF/TOF Mass Spectrometry vol.29, pp.8, 2018, https://doi.org/10.1007/s13361-018-1993-z
  35. Influence of the sebaceous gland density on the stratum corneum lipidome vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29742-7
  36. Very long-chain tear film lipids produced by fatty acid elongase ELOVL1 prevent dry eye disease in mice vol.32, pp.6, 2018, https://doi.org/10.1096/fj.201700947R
  37. Understanding the diversity of membrane lipid composition vol.19, pp.5, 2018, https://doi.org/10.1038/nrm.2017.138
  38. Examining heat treatment for stabilization of the lipidome vol.10, pp.5, 2018, https://doi.org/10.4155/bio-2017-0209
  39. -15 : 0 odd-chain SFA in human cells vol.121, pp.3, 2019, https://doi.org/10.1017/S0007114518003185
  40. Reduces Epidermal Barrier Function by Affecting Fatty Acid Composition of Ceramide in a Mouse Atopic Dermatitis Model vol.2019, pp.2314-7156, 2019, https://doi.org/10.1155/2019/3030268
  41. Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission vol.129, pp.2, 2019, https://doi.org/10.1172/JCI120606
  42. X-linked adrenoleukodystrophy; Recent Advances in Classification, Diagnosis and Management vol.24, pp.3, 2016, https://doi.org/10.26815/jkcns.2016.24.3.71
  43. Inhibition of Mdmx (Mdm4) in vivo induces anti-obesity effects vol.9, pp.7, 2014, https://doi.org/10.18632/oncotarget.23837
  44. Parallel Reaction Monitoring reveals structure-specific ceramide alterations in the zebrafish vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-56466-z
  45. Robust Method for High-Throughput Screening of Fatty Acids by Multisegment Injection-Nonaqueous Capillary Electrophoresis-Mass Spectrometry with Stringent Quality Control vol.91, pp.3, 2014, https://doi.org/10.1021/acs.analchem.8b05054
  46. De novo mutation in ELOVL1 causes ichthyosis, acanthosis nigricans, hypomyelination, spastic paraplegia, high frequency deafness and optic atrophy vol.56, pp.3, 2014, https://doi.org/10.1136/jmedgenet-2018-105711
  47. Identification of genes mediating branched chain fatty acid elongation vol.593, pp.14, 2014, https://doi.org/10.1002/1873-3468.13451
  48. Decreased very long chain polyunsaturated fatty acids in sperm correlates with sperm quantity and quality vol.36, pp.7, 2014, https://doi.org/10.1007/s10815-019-01464-3
  49. Naturally Occurring Nervonic Acid Ester Improves Myelin Synthesis by Human Oligodendrocytes vol.8, pp.8, 2014, https://doi.org/10.3390/cells8080786
  50. Growth and Fatty Acid Metabolism of Aphis gossypii Parasitized by the Parasitic Wasp Lysiphlebia japonica vol.67, pp.32, 2019, https://doi.org/10.1021/acs.jafc.9b02084
  51. Side-chain deuterated cholesterol as a molecular probe to determine membrane order and cholesterol partitioning vol.17, pp.37, 2014, https://doi.org/10.1039/c9ob01342c
  52. Dyslipidemia in retinal metabolic disorders vol.11, pp.10, 2019, https://doi.org/10.15252/emmm.201910473
  53. Lipidomics in Ulcerative Colitis Reveal Alteration in Mucosal Lipid Composition Associated With the Disease State vol.25, pp.11, 2014, https://doi.org/10.1093/ibd/izz098
  54. Seipin negatively regulates sphingolipid production at the ER–LD contact site vol.218, pp.11, 2019, https://doi.org/10.1083/jcb.201902072
  55. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state vol.15, pp.12, 2019, https://doi.org/10.1038/s41574-019-0256-9
  56. Ins and Outs of Interpreting Lipidomic Results vol.431, pp.24, 2014, https://doi.org/10.1016/j.jmb.2019.08.006
  57. State of the Art in Stratum Corneum Research. Part II: Hypothetical Stratum Corneum Lipid Matrix Models vol.33, pp.4, 2020, https://doi.org/10.1159/000509019
  58. Genome-Wide Identification of Peanut KCS Genes Reveals That AhKCS1 and AhKCS28 Are Involved in Regulating VLCFA Contents in Seeds vol.11, pp.None, 2014, https://doi.org/10.3389/fpls.2020.00406
  59. Relevance of Fatty Acids to Sperm Maturation and Quality vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7038124
  60. Fit-for-purpose biomarker LC-MS/MS qualification for the quantitation of very long chain fatty acids in human cerebrospinal fluid vol.12, pp.3, 2020, https://doi.org/10.4155/bio-2019-0256
  61. Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids† vol.102, pp.2, 2020, https://doi.org/10.1093/biolre/ioz191
  62. Short-chain fatty acid, acylation and cardiovascular diseases vol.134, pp.6, 2014, https://doi.org/10.1042/cs20200128
  63. Evaluation of Cell Harvesting Techniques to Optimize Lipidomic Analysis from Human Meibomian Gland Epithelial Cells in Culture vol.21, pp.9, 2014, https://doi.org/10.3390/ijms21093277
  64. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS vol.61, pp.6, 2014, https://doi.org/10.1194/jlr.ra120000671
  65. Catalytic residues, substrate specificity, and role in carbon starvation of the 2-hydroxy FA dioxygenase Mpo1 in yeast vol.61, pp.7, 2014, https://doi.org/10.1194/jlr.ra120000803
  66. Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi vol.5, pp.12, 2014, https://doi.org/10.1038/s41564-020-00790-y
  67. Very-long-chain fatty acid metabolic capacity of 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) promotes replication of hepatitis C virus and related flaviviruses vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-61051-w
  68. Two fatty acid synthase genes from the integument contribute to cuticular hydrocarbon biosynthesis and cuticle permeability in Locusta migratoria vol.29, pp.6, 2014, https://doi.org/10.1111/imb.12665
  69. Very long chain fatty acids are an important marker of nutritional status in patients with anorexia nervosa: a case control study vol.14, pp.None, 2014, https://doi.org/10.1186/s13030-020-00186-8
  70. Electrolytic-reduction ion water induces ceramide synthesis in human skin keratinocytes vol.15, pp.5, 2014, https://doi.org/10.5582/ddt.2021.01091
  71. Production of branched-chain very-long-chain fatty acids by fatty acid elongases and their tissue distribution in mammals vol.1866, pp.1, 2014, https://doi.org/10.1016/j.bbalip.2020.158842
  72. Alterations in Glycerolipid and Fatty Acid Metabolic Pathways in Alzheimer's Disease Identified by Urinary Metabolic Profiling: A Pilot Study vol.12, pp.None, 2014, https://doi.org/10.3389/fneur.2021.719159
  73. Alterations of Ultra Long-Chain Fatty Acids in Hereditary Skin Diseases-Review Article vol.8, pp.None, 2014, https://doi.org/10.3389/fmed.2021.730855
  74. β-Glucosylation of cholesterol reduces sterol-sphingomyelin interactions vol.1863, pp.2, 2014, https://doi.org/10.1016/j.bbamem.2020.183496
  75. Rearrangements of Blood and Tissue Fatty Acid Profile in Colorectal Cancer - Molecular Mechanism and Diagnostic Potential vol.11, pp.None, 2014, https://doi.org/10.3389/fonc.2021.689701
  76. Comprehensive stratum corneum ceramide profiling reveals reduced acylceramides in ichthyosis patient with CERS3 mutations vol.48, pp.4, 2014, https://doi.org/10.1111/1346-8138.15725
  77. The Antipsychotic Risperidone Alters Dihydroceramide and Ceramide Composition and Plasma Membrane Function in Leukocytes In Vitro and In Vivo vol.22, pp.8, 2014, https://doi.org/10.3390/ijms22083919
  78. Improvement of Evaporative Dry Eye With Meibomian Gland Dysfunction in Model Mice by Treatment With Ophthalmic Solution Containing Mineral Oil vol.10, pp.4, 2014, https://doi.org/10.1167/tvst.10.4.21
  79. Stage-Specific De Novo Synthesis of Very-Long-Chain Dihydroceramides Confers Dormancy to Entamoeba Parasites vol.6, pp.2, 2021, https://doi.org/10.1128/msphere.00174-21
  80. The structural basis of fatty acid elongation by the ELOVL elongases vol.28, pp.6, 2014, https://doi.org/10.1038/s41594-021-00605-6
  81. Inherited disorders of complex lipid metabolism: A clinical review vol.44, pp.4, 2014, https://doi.org/10.1002/jimd.12369
  82. Biomarkers predictive of long-term fertility found in vaginal lipidome of gilts at weaning vol.99, pp.8, 2014, https://doi.org/10.1093/jas/skab189
  83. Essential Fatty Acids as Biomedicines in Cardiac Health vol.9, pp.10, 2014, https://doi.org/10.3390/biomedicines9101466
  84. Interaction between β-lactoglobulin and chlorogenic acid and its effect on antioxidant activity and thermal stability vol.121, pp.None, 2014, https://doi.org/10.1016/j.foodhyd.2021.107059
  85. C24:0 avoids cold exposure-induced oxidative stress and fatty acid β-oxidation damage vol.24, pp.12, 2014, https://doi.org/10.1016/j.isci.2021.103409
  86. Comparative transcriptome analysis of the newly discovered insect vector of the pine wood nematode in China, revealing putative genes related to host plant adaptation vol.22, pp.1, 2014, https://doi.org/10.1186/s12864-021-07498-1
  87. Very long-chain saturated fatty acids and diabetes and cardiovascular disease vol.33, pp.1, 2014, https://doi.org/10.1097/mol.0000000000000806